Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T14:57:30.357Z Has data issue: false hasContentIssue false

NMR Experiments on Molecular Dynamics in Nanoporous Media: Evidence for Lévy Walk Statistics

Published online by Cambridge University Press:  10 February 2011

Rainer Kimmich
Affiliation:
Universität Ulm, Sektion Kernresonanzspektroskopie, 89069 Ulm, Germany
Tatiana Zavada
Affiliation:
Universität Ulm, Sektion Kernresonanzspektroskopie, 89069 Ulm, Germany
Siegfried Stapf
Affiliation:
Universität Ulm, Sektion Kernresonanzspektroskopie, 89069 Ulm, Germany
Get access

Abstract

Field-cycling 1H and 2H NMR relaxometry and field-gradient 1H NMR diffusometry were applied to polar and nonpolar liquids filled into porous glasses and fineparticle agglomerates (SiO2, ZnO, TiO2, globular proteins). The orders of magnitude of the length scales of the pore spaces ranged from 100 to several 102 nm. Pronounced differences of the spin-lattice relaxation dispersion for “weak” (nonpolar) and “strong” (polar) adsorption were found. In the latter case, the correlation times of the adsorbate orientation are up to eight orders of magnitude longer than in bulk. Trans-lational diffusion in liquid surface layers was directly studied with the aid of field-gradient NMR diffusometry in systems where the free liquid was frozen. The spin-lattice relaxation dispersion can be explained on the basis of reorientations mediated by translational displacements (RMTD) of adsorbate molecules on the surfaces. Thisprocess appears to be enhanced by a Levy walk mechanism so that the propagator adopts the form of a Cauchy distribution. The evaluated surface correlation functions are characterized by surface correlation lengths in the same order as the pore diameters, that is, up to three orders ofmagnitude larger than the length scale of dipolar interaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bychuk, O. V. and O'Shaughnessy, B., J. Chem. Phys. 101, 772 (1994).Google Scholar
[2] Kärger, J., Pfeifer, H., and Heink, W., Adv. Magn. Reson. 12, 1 (1988).Google Scholar
[3] Kimmich, R., NMR: Tomography, Diffusometry, Relaxometry (Springer-Verlag, Heidelberg, 1997).Google Scholar
[4] Kimmich, R., Unrath, W., Schnur, G., and Rommel, E. J. Magn. Reson. 91, 136 (1991).Google Scholar
[5] Stapf, S., Kimmich, R., and Nieβ, J., J. Appl. Phys. 75, 529 (1994).Google Scholar
[6] Stapf, S., Kimmich, R., and Seitter, R.-O., Phys. Rev. Lett. 75, 2855 (1995).Google Scholar
[7] Kimmich, R., Klammler, F., Skirda, V. D., Serebrennikova, I. A., Maklakov, A. I., and Fat-kullin, N., Appl. Magn. Reson. 4, 425 (1993).Google Scholar
[8] Kimmich, R., Stapf, S., Seitter, R.-O., Callaghan, P., and Khozina, E. V., Mat. Res. Soc. Symp. Proc. 366, 189 (1995).Google Scholar
[9] Kimmich, R., Stapf, S., Maklakov, A. I., Skirda, V. D., and Khozina, E. V., Magn. Reson. Imaging 14, (1996), in press.Google Scholar
[10] Hahn, K., Kärger, J., and Kukla, V., Phys. Rev. Lett. 76, 2762 (1996).Google Scholar
[11] Bródka, A. and Zerda, T. W., J. Chem. Phys. 104, 6319 (1996).Google Scholar
[12] Korb, J.-P., private communication.Google Scholar
[13] Kimmich, R. and Weber, H. W., Phys. Rev. B 47, 11 788 (1993).Google Scholar
[14] Stapf, S. and Kimmich, R., J. Chem. Phys. 103, 2247 (1995).Google Scholar
[15] Kimmich, R., Nusser, W., and Gneiting, T., Colloids and Surfaces 45, 283 (1990).Google Scholar
[16] Korb, J.-P., Malier, L., Cros, F., Xu, Shu, and Jonas, J., Phys. Rev. Lett. 77, 2312 (1996).Google Scholar
[17] König, S., Sackmann, E., Richter, D., Zorn, R., Carlile, C., and Bayerl, T. M., J. Chem. Phys. 100, 3307 (1994).Google Scholar
[18] Bychuk, O. V. and O'Shaughnessy, B., J. Phys. II 4, 1135 (1994).Google Scholar
[19] Klafter, J., Shlesinger, M. F., and Zumofen, G., Physics Today 49, 33 (1996).Google Scholar