Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T09:13:55.135Z Has data issue: false hasContentIssue false

Nlo Polymer Material Systems for Electro-Optic Devices

Published online by Cambridge University Press:  10 February 2011

J. T. Kenney
Affiliation:
ROI Technology (ROITech), 2990 Scott Blvd., SANTA CLARA, CA 95054
J. C. Nurse
Affiliation:
ROI Technology (ROITech), 2990 Scott Blvd., SANTA CLARA, CA 95054
J. C. Chon
Affiliation:
ROI Technology (ROITech), 2990 Scott Blvd., SANTA CLARA, CA 95054
E. S. Binidey
Affiliation:
ROI Technology (ROITech), 2990 Scott Blvd., SANTA CLARA, CA 95054
M. Stiller
Affiliation:
ROI Technology (ROITech), 2990 Scott Blvd., SANTA CLARA, CA 95054
D. W. Ball
Affiliation:
ROI Technology (ROITech), 2990 Scott Blvd., SANTA CLARA, CA 95054
A. K-Y. Jen
Affiliation:
ROI Technology (ROITech), 2990 Scott Blvd., SANTA CLARA, CA 95054
Get access

Abstract

Non linear optical (NLO) polymers have great potential to be fabricated into integrated electro-optic (E/O) devices for use as high speed electro-optic (E/O) switches, modulators and interconnects in computer and communication systems [1,2]. The fabrication of practical integrated E/O devices requires a material system that meets the final device requirements and can be processed using standard fabrication technologies [3]. Applications of polymer E/O devices in electronic systems have been limited by the relatively low thermal stability and poor processability of non linear optical (NLO) polymers. This paper describes a thermally stable electro-optic material system and the fabrication process to make compact integrated E/O devices for application in electronic systems. This material system consists of high thermal stability polyimide core and cladding materials. The active NLO material is a side chain polyimide that uses a new high activity and high thermal stability chromophore.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Fujimoto, H. H., Das, S., Valley, J. F., Stiller, M., Dries, L., Girton, D., Van Eck, T., Ermer, S., Binkley, E. S., Nurse, J. C. and Kenney, J. T. in Electrical. Optical and Magnetic Properties of Organic Solid State Materials, Mat. Res. Soc. Symp, Proc. Vol.328, page 553, 1993; Materials Research Society.Google Scholar
[2] Dalton, L. R., Xu, C., Harper, A. W., Ghosn, R., Wu, B., Liang, Z., Montgomery, R. and Jen, A. K-Y., Nonlinear Optics, 1995. 10. 383.Google Scholar
[3] Kenney, J. T., Binkley, E. S., Jen, A. K-Y. and Wong, K. Y., in Electrical Optical and Magnetic Properties of Organic Solid State Materials. Mat. Res. Soc. Symp, Proc. Vol.328, page 511. 1993; Materials Research Society.Google Scholar
[4] Rao, V. P., Jen, A. K-Y., Drost, K. J., and Cai, Y. M. in Electrical, Optical and Magnetic Properties of Organic Solid State Materials, Mat. Res. Soc. Symp, Proc. 1995.Google Scholar
[5]Alex Jen, K-Y., Tian-An Chen, Yongming Cai in Electrical, Optical and Magnetic Properties of Organic Solid State Materials, Mat. Res. Soc. Symp, Proc. 1995.Google Scholar
[6] Drost, K. J., Jen, A. K-Y., Rao, V. P. and Mininni, R. M. in Electrical, Optical and Magnetic Properties of Organic Solid State Materials, Mat. Res. Soc. Symp, Proc. Vol.328, page 517, 1993; Materials Research Society.Google Scholar
[7] Jen, A. K-Y., Wong, K. Y., Rao, V. P., Drost, K. J., Cai, Y. M., Caldwell, B. and Mininni, R. M. in Electrical, Optical and Magnetic Properties of Organic Solid State Materials, Mat. Res. Soc. Symp, Proc. Vol.328, page 413, 1993; Materials Research Society.Google Scholar