Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:32:08.744Z Has data issue: false hasContentIssue false

NH3 Doping in MOCVD Growth of ZnO Thin Films

Published online by Cambridge University Press:  01 February 2011

Tahir Zaidi
Affiliation:
[email protected], Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia, United States
Muhammad Jamil
Affiliation:
[email protected], United States
Andrew Melton
Affiliation:
[email protected], Georgia Institute of Technologyu, School of Electrical and Computer Engineering, Atlanta, Georgia, United States
Nola Li
Affiliation:
[email protected], United States
William E. Fenwick
Affiliation:
[email protected], United States
Ian T. Ferguson
Affiliation:
[email protected], United States
Get access

Abstract

In this paper effects of NH3 doping on ZnO thin films grown by metal organic chemical vapor deposition (MOCVD) on c-plane sapphire substrates using diethyl zinc (DEZn) and O2 precursors and N2 as the carrier gas have been studied. NH3 flow rates were varied from 0.1% to 4% in the growth runs. All the runs were done at 500°C at 10 Torr pressure.

The XRD measurements show a single ZnO (002) peak. Raman data for the samples confirms presence of ZnO:N modes at 275cm−1, 510cm−1 and 575 cm−1 and 645cm−1. The PL results for Zn rich films show weak broad peaks centered at 480nm and 650nm with no ZnO band edge emission, while oxygen rich films show weak ZnO band edge emission and a strong broad orange peak centered at 650nm. Hall effect measurements indicate that all of the as-grown films are highly resistive. Some are weakly p-type with carrier concentration of 4.24 × 1014 cm−3 and mobility of 16.55 cm2/Vs. Annealing in N2 ambient for 60 minutes at 800°C enhances the PL band edge emission and converts all the films to highly conducting n-type, with carrier concentration on the order of 8 × 1018 cm−3, mobility on the order of 12 cm2/Vs and resistivity of 0.063 Ω-cm.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kaminska, E., Przezdziecka, E., Piotrowska, A., Kossut, J., Boguslawski, P., Pasternak, I, Jakiela, R., Dynowska, E, Zinc Oxide and Related Materials Symposium, Nov. 2006 Google Scholar
2. Rogers, D J, Teherani, F H, Yasan, A, Minder, K, Kung, P and Razeghi, M 2006 Appl. Phys. Lett. 88 141918 Google Scholar
3. Wang, J., Du, G., Zhao, B., Yang, X., Zhang, Y., Ma, Y., Liu, D., Chang, Y., Wang, H., Yang, H., and Yang, S., J. Cryst. Growth 255, 293 (2003).Google Scholar
4. Look, D.C., Reynolds, D.C., Litton, C.W., Jones, R.L., Eason, D.B., Cantwell, G., Appl. Phys. Lett. 81 (2002) 1830.Google Scholar
5. Rommeluere, J.F., Svob, L., Jomard, F., Mimila-Arroyo, J., Lusson, A., Sallet, V., Marfaing, Y., Appl. Phys. Lett. 83 (2003) 287.Google Scholar
6. Xu, W.Z., Ye, Z.Z., Zhou, T., Zhao, B.H., Zhu, L.P., Huang, J.Y., J. Cryst. Growth 265 (2004) 133 Google Scholar
7. Lu, J.G., Ye, Z.Z., Zhuge, F., Zeng, Y.J., Zhao, B.H., Zhu, L.P., Appl. Phys. Lett. 85 (2004) 3134.Google Scholar
8. Zeng, Y.J., Ye, Z.Z., Xu, W.Z., Liu, B., Che, Y., Zhu, L.P., Zhao, B.H., Materials Letters 61 (2007) 4144 Google Scholar
9. Klingshrin, C.ZnO: Material, Physics and Applications”, ChemPhysChem 2007, 8, 782803 Google Scholar
10. Vanhausden, K., Warren, W.L., Seager, C.H., Tallant, D.R., Voigt, J.A., Gnade, B.E., J. Appl. Phys. 79 (1996) 7983.Google Scholar
11. Chen, Z.Q., Yamamoto, S., Maekawa, M., Kawasuso, A., Yuan, X.L., Sekiguchi, T., J. Appl. Phys. 94 (2003) 4807.Google Scholar
12. Pan, C. J., Pong, B. J., Chou, B. W., Chi, G. C., and Tu, C. W., phys. stat. sol. (c) 3, No. 3, (2006) 611613.Google Scholar
13. ABDjuri^si´c, , Leung, Y H, Tam, K H, Hsu, Y F, Ding, L, Ge, W K, Zhong, Y C, Wong, K S, Chan, W K, Tam, H L, Cheah, K W, Kwok, W M and Phillips, D L, Nanotechnology 18 (2007) 095702,Google Scholar
14. Lee, E.-C., Kim, Y.-S., Jin, Y.-G., Chang, K.J., Phys. Rev., B 64 (2001) 085120.Google Scholar
15. Limpijumnong, S., Li, X.N., Wei, S.-H., Zhang, S.B., Appl. Phys. Lett. 86 (2005) 211910.Google Scholar
16. Nickel, N.H., Friedrich, F., Rommeluère, J.F., Galtier, P., Appl. Phys. Lett. 87 (2005) 211905.Google Scholar