Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T00:56:21.819Z Has data issue: false hasContentIssue false

New transparent conductors anatase Ti1−xMxO2 (M=Nb,Ta): transport and optical properties

Published online by Cambridge University Press:  26 February 2011

Yutaka Furubayashi
Affiliation:
[email protected], Kanagawa Academy of Science and Technology, Hasegawa project, KSP east 504, 3-2-1 Sakado,Takatsu-ku, Kawasaki, N/A, 213-0012, Japan, +81-44-819-2081, +81-44-819-2083
Taro Hitosugi
Affiliation:
[email protected], Kanagawa Academy of Science and Technology, Hasegawa project, Japan
Yukio Yamamoto
Affiliation:
[email protected], Kanagawa Academy of Science and Technology, Hasegawa project, Japan
Yasushi Hirose
Affiliation:
[email protected], Kanagawa Academy of Science and Technology, Hasegawa project, Japan
Makoto Otani
Affiliation:
[email protected], Kanagawa Academy of Science and Technology, Hasegawa project, Japan
Kiyomi Nakajima
Affiliation:
[email protected], National Institute for Material Science, Japan
Toyohiro Chikyow
Affiliation:
[email protected], National Institute for Material Science, Japan
Toshihiro Shimada
Affiliation:
[email protected], Kanagawa Academy of Science and Technology, Hasegawa project, Japan
Tetsuya Hasegawa
Affiliation:
[email protected], Kanagawa Academy of Science and Technology, Hasegawa project, Japan
Get access

Abstract

We have discovered new transparent conducting oxides (TCOs), anatase Ti1-xMxO2 (M=Nb,Ta), in thin film form. Both films with 0.03 ≤ × ≤ 0.06 showed resistivity of 2−3 × 10−4 Ωcm and internal transmittance of ∼95% in the visible light region (40 nm in thickness), at room temperature. These values are comparable to those of typical TCOs, such as In2−xSnxO3 (ITO).

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ginley, D. S. and Bright, C., Mater. Res. Bull. 25, 15 (2000).Google Scholar
2 Pan, C. A. and Ma, T. P., Appl. Phys. Lett. 37, 163 (1980).Google Scholar
3 Hamberg, I. and Granqvist, C. G., J. Appl. Phys. 60, R123 (1986).Google Scholar
4 Minami, T., Mater. Res. Bull. 25, 38 (2000).Google Scholar
5 Furubayashi, Y., Hitosugi, T., Yamamoto, Y., Inaba, K., Kinoda, G., Hirose, Y., Shimada, T., and Hasegawa, T., Appl. Phys. Lett. 86, 252101 (2005).Google Scholar
6 Hitosugi, T., Furubayashi, Y., Ueda, A., Itabashi, K., Inaba, K., Hirose, Y., Kinoda, G., Yamamoto, Y., Shimada, T., and Hasegawa, T., Jpn. J. Appl. Phys. 44, L1063 (2005).Google Scholar
7 Tang, H., Berger, H., Schmid, P. E., Lévy, F., and Burri, G., Solid State Commun. 23, 161 (1977).Google Scholar
8 Tang, H., Prasad, K., Sanjines, R., Schmid, P. E., and Lévy, F., J. Appl. Phys. 75, 2042 (1994).Google Scholar
9 Taylor, S. R., and McLennan, S. H., The Continental Crust: Its Composition and Evolution, Blackwell, Oxford, p.312 (1985).Google Scholar
10 Shannon, R., Acta Crystallogr. Sect. A 32, 751 (1976).Google Scholar
11 Shigesato, Y., Paine, D. C., and Haynes, T. E., J. Appl. Phys. 73, 3805 (1993).Google Scholar