Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T07:17:07.378Z Has data issue: false hasContentIssue false

New Tight-Binding Method for Simulation of Defect Configurations, Creation and Diffusion Mechanisms in Solids: Application to Silicon

Published online by Cambridge University Press:  10 February 2011

Zokirkhon M. Khakimov*
Affiliation:
Institute of Nuclear Physics of Uzbekistan Academy of Sciences, Ulughbek, 702132, Tashkent, Uzbekistan, [email protected]
Get access

Abstract

This paper presents the self-consistent tight-binding method of new generation which, unlike other tight-binding methods, allows one to calculate structural energies of multiatomic systems (molecules, clusters, defects in solids) and their spectroscopic energies in the framework of the same computational scheme and with comparable accuracy. Reliability of the method is illustrated considering defect state problems in crystalline and amorphous silicon (electron-enhanced-atomic diffusion, metastable defect creation, defects with effective-negative correlation energies, etc.) and comparing obtained results with ab initio calculations and experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schluter, M., Helvetica Physica Acta 58 355 (1985).Google Scholar
2. Baraff, G.A., Kane, E.O., Schluter, M., Phys.Rev. B21 5662 (1980); M. Lanoo, G.A. Baraff, M. Schluter, Phys.Rev. B24 955 (1981).Google Scholar
3. Baraff, G.A., Schluter, M., Allan, G., Phys.Rev.Lett. 50 739 (1983).Google Scholar
4. Bar-Yam, Y. and Joannopoulos, J.D., Phys.Rev.Lett. 52 1129 (1984).Google Scholar
5. Car, R., Kelly, P.J., Oshiyama, A., Pantelides, S.T., Phys.Rev.Lett. 52 1814 (1984).Google Scholar
6. Chadi, D.J., Phys.Rev. B19 2074 (1979).Google Scholar
7. Goodwin, L., Skinner, A.J., Pettifor, D.J., Europhys.Lett. 9 701 (1989).Google Scholar
8. Kwon, I., Biswas, R., Wang, C.Z., Ho, K.M., Soukoulis, C.M., Phys.Rev. B49 7242 (1994).Google Scholar
9. Tang, M., Colombo, L., Rubia, T. Dias de la, in Ion-Solid Interactions for Materials Modification and Processing, edited by Poker, D.B., Ila, D., Cheng, Y.T., Harriott, L.R., Sigmon, T.W., (Mat. Res. Soc. Symp. Proc. 396, Pittsburgh, PA, 1995) p.3338.Google Scholar
10. Khakimov, Z.M., Comput.Mater.Sci. 3(1), 95 (1994).Google Scholar
11. Slater, J.S. and Koster, G.F., Phys.Rev. 94 1498 (1954).Google Scholar
12. Umarova, F.T., Khakimov, Z.M., in Computer Modelling of Electronic and Atomic Processes in Solids, edited by Tennyson, R.S. and Kiv, A.E. (Kluwer Academic Publishers, Netherlands, 1997), pp.137141.Google Scholar
13. Watkins, G.D. and Troxell, J.R., Phys.Rev.Lett. 44 593 (1980).Google Scholar
14. Jansen, E., Stedman, R., Grossmann, G., Grimmeiss, H.G., Phys.Rev. B29 1907 (1984).Google Scholar
15. Brotherton, S.D., King, M.J., Parker, G.L., J.Appl.Phys. 52 4649 (1981).Google Scholar
16. Watkins, G.D., Phys.Rev. 155 802 (1967).Google Scholar
17. Bourgoin, J. and Korbett, J., J.Phys.Lett. 38A, 135 (1972); B.L. Oksengendler, in Metod radiatsionnogo vozdeystviya v issledovanii structuri i svoystv tverdikh tel, edited by O.R. Niyazova (Fan, Tashkent, 1971), pp.16-32.Google Scholar
18. Khakimov, Z.M., Umarova, F.T., Mukhtarov, A.P., Uzbekskii Fizicheski Jurnal 12 45 (1995).Google Scholar
19. Zhu, J., Yang, L.H., Mailhiot, C., Ruba, T. Dias de la, Gilmer, G.H., Nucl.Instr.and.Meth. B102, 29 (1995).Google Scholar
20. Staebler, D.L. and Wronski, C.R., Appl.Phys.Lett. 31 292 (1977).Google Scholar
21. Nickel, N.H., Jackson, W.B., Johnson, N.M., Modern Phys.Lett. 8 1627 (1994).Google Scholar
22. Stutzmann, M., Jackson, W.B., Tsai, C.C., Phys.Rev. B32 23 (1985).Google Scholar
23. Jackson, W.B., Phys.Rev. B41 10257 (1990).Google Scholar
24. Redfield, D., Modem Phys.Lett. B5 933 (1991).Google Scholar
25. Jones, R. and Lister, G.M.S., Philos.Mag. 61 881 (1990).Google Scholar
26. Park, Y.K. and Myles, C.W., Phys.Rev. B51 1671 (1995).Google Scholar
27.According to our calculations (Khakimov, Z.M., Mukhtarov, A.P., Umarova, F.T., Levin, A.A., Fiz. tekh. poluprovodn. [Sov.Phys.semicond.] 28 1727 (1994)), H forms also bend-bridge bond on the regular crystalline Si lattice, while DFT calculations (C.G. Van de Walle, P.J.H. Dentebeer, Y. Bar-Yam, S.T. Pantelides, Phys.Rev. B39 10791 (1989)) prefer ideal bond-centered position for H+ and H0. However, both calculations predict H as negative-U system (H+ and H- are stable, but H0 is not).Google Scholar