No CrossRef data available.
Published online by Cambridge University Press: 22 February 2011
Compound semiconductors are at the heart of todays advanced digital and optoelectronic devices. As device production levels increase, so too does the need for high throughput deposition systems. The vertical rotating disk reactor (RDR) has been scaled to dimensions allowing metal organic chemical vapor deposition (MOCVD) on multiple substrates located on a 300 mm diameter platter. This symetric large area reactor affords easy access over a wide range of angles for optical monitoring and control of the growth process. The RDR can be numerically modeled in a straightforward manner, and we have derived scaling rules allowing the prediction of optimum process conditions for larger reactor sizes. The material results give excellent agreement with the modeling, demonstrating GaAs/AlAs structures with <±0.9% thickness uniformities on up to 17-50mm or 4-100mm GaAs substrates. Process issues related to reactor scaling are reviewed. With high reactant efficiencies and short cycle times between growths, through the use of a vacuum loadlock, the costs per wafer are found to be dramatically less than in alternative process reactors. The high reactant utilization, in combination with a dedicated and highly efficient exhaust scrubbing system, minimizes the systems environmental impact.