Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:16:22.903Z Has data issue: false hasContentIssue false

New Surface Atomic Structures for III-V(110)-p(1x1)-Sb(1ML):Chemical Bonding and Electronic Structure

Published online by Cambridge University Press:  16 February 2011

John P. LaFemina
Affiliation:
Pacific Northwest Laboratory,. P.O. Box 999, Richland, Washington 99352
C. B. Duke
Affiliation:
Xerox Webster Research Center, 800 Phillips Road 01 14-38D, Webster, New York 14580
C. Maflhiot
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808. Livermore, California 94550 §Operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.
Get access

Abstract

Tight-binding total energy computations are used to examine the chemical bonding and electronic structure for two new minimum-energy surface atomic structures for p(lxl) overlayers of Sb on III-V(110) surfaces. The bonding in each of these structures is unique, having no analog in either the bulk or small molecule coordination chemistry of these materials, and is a phenomenon uniquely associated with the constrained epitaxical growth of the Sb overlayer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Skeath, P., Su, C.Y., LIndau, I., and Spicer, W.E., J. Vac. ScL Tech 17, 874 (1980); (b) P. Skeath, I. Lindau, C.Y. Su, and W.E. Spicer, J. Vac. ScL Tech, 19, 556 (1981).Google Scholar
2. Carelli, J., and Kahn, A., Surf. Sci. 116, 380 (1982).Google Scholar
3. (a) Tulke, A., Mattern-Klossen, M.. and Lülth, H., Solid State Comm. 59, 303 (1986); (b) A. Tulke and H. Ltith, Surf. Sci. 178, 131 (1986).Google Scholar
4. Mårtensson, P., Hansson, G.V., Lähdeniemi, M., Magnusson, K.O., Wildund, S., and Nicholls, J.M., Phys. Rev. B 33, 7399 (1986).Google Scholar
5. Drube, W. and Himpsel, F.J., Phys. Rev. B37 855, (1988).Google Scholar
6. Mårtensson, P. and Feenstra, R.M.. Phys. Rev. B39, 7744 (1989).Google Scholar
7. Duke, C.B., Paton, A-, Ford, W.K., Kahn, A-, and J. Carelli. Phys. Rev. B 26, 803 (1982).Google Scholar
8. Mallhiot, C., Duke, C.B., and Chadi, D.J., Phys. Rev. Lett. 23, 2114 (1984); J. Vac. Sci. Tech A3, 915 (1985); Phys. Rev. B31, 2213 (1985).Google Scholar
9. LaFemina, J.P., Duke, C.B., and Mailhiot, C.. J. Vac. Sci. Tech. B8 (1990), in press.Google Scholar
10. Vogl, P., HJalmarson, H.P., and Dow, J.D., J. Phys. Chem. Solids 44, 365 (1983).Google Scholar
11. Chadi, D.J., Phys. Rev. Lett. 41, 1062 (1978); Phys. Rev. B 19, 2074 (1979); Vacuum 33. 613(1983).Google Scholar
12. Vanderbilt, D. and Joannopoulos, J.D., Phys. Rev. B 22,2927 (1980).Google Scholar
13. Chadi, D.J., Phys. Rev. B 22,785 (1984).Google Scholar