Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T08:50:59.208Z Has data issue: false hasContentIssue false

New Routes to Silicic Acid Containing Inorganic-Organic Hybrid Precursors and Polymers

Published online by Cambridge University Press:  21 February 2011

D. Hoebbel
Affiliation:
Institut fur Neue Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbriicken, Germany
K. Endres
Affiliation:
Institut fur Neue Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbriicken, Germany
T. Reinert
Affiliation:
Institut fur Neue Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbriicken, Germany
H. Schmidt
Affiliation:
Institut fur Neue Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbriicken, Germany
Get access

Abstract

In view of the outstanding role that silicic acids (sa.) play in inorganic materials a survey will be presented regarding the possibilities of the integration of sa. in organic matrices via chemical reactions. The objective is to combine the advantageous properties of the silicic acid with those of the organic compounds in order to generate novel materials. The reactions of silicic acids with organic molecules, as studied by 29Si NMR spectroscopy, are described using the silicic acid H8Si8O20 with a defined double four-ring structure as an example. By silylation of the hydrophilic H8Si8O20 its functional organophilic derivatives were synthesized. The s.a. derivatives with epoxy-, alkoxy-, HSi-, ketoester or unsaturated groups are capable of condensation, polymerization, complexation or additive reactions leading to reactive inorganic-organic precursors or polymers with the defined silicic acid unit. The synthesis and structure of the following s.a. containing precursors and polymers will be reported, (a) inorganic-organic polymers with a high content of silanol groups, (b) microporous polymers free of silanol groups and (c) metal (Al, Zr) alkoxide complexes attached to defined silicic acid units. The model reactions of the double four-ring silicic acid derivatives can be transferred to technical silicic acid solutions prepared from water glass. The presented reaction pathways are a basis for the preparation of a great variety of new inorganic-organic compounds with tailor-made structures and properties which can be used for highly homogeneous and stoichiometric materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Her, R.K., The Chemistry of Silica (John Wiley and Sons, New York, 1979).Google Scholar
2 Bracke, P., Schurmans, H. and Verhoest, J.; Inorganic Fibres and Composite Materials (Pergamon Press, New York, 1984).Google Scholar
3 Abe, , Kaijou, A., Nagao, Y. and Misono, T., J. Polym. Sci., Polym. Chem. 26, 419427 (1988).Google Scholar
4 Currell, B.R., Midgley, H.G., Parsonage, J.R. and Soubhi, S., Br. Polym. J. 14, 95 (1982).Google Scholar
5 Schmidt, H., Mat. Res. Soc. Symp. Proc. 171, 313 (1990).Google Scholar
6 Sol-Gel Technology for Thin Films. Fibers. Preforms. Electronics, and Speciality Shapes edited by Klein, L.C., (Noyes Publication, New Yersey, 1988).Google Scholar
7 Hoebbel, D. and Ebert, R., Z.Chem. 28, 4151 (1988).Google Scholar
8 Brinker, C.J., J. Non-Cryst. Solids 100, 31 (1988).Google Scholar
9 Hoebbel, D. and Wieker, W., Z. Anorg. Allg. Chem. 384, 4352 (1971).Google Scholar
10 Agaskar, PA., J. Chem. Soc, Chem. Commun. 1992 10241026.Google Scholar
11 Day, V.W., Klemperer, W.G., Mainz, V.V. and Millar, DM., J. Am Chem. Soc. 107, 8262–8264 (1985).Google Scholar
12 Feher, F.J. and Weller, K.J., Inorg. Chem. 30, 880–882 (1991).Google Scholar
13 Calzaferri, G., Nachr. Chem. Tech. Lab. 40, i 106 (1992).Google Scholar
14 Hasegawa, I., Ishida, M. and Motojima, S., Proc. of the First European Workshop on Hybrid Organic-Inorganic Materials (Bierville, France, 1993), pp. 329332.Google Scholar
15 Hoebbel, D., Pitsch, I., Reiner, T., Hiller, W., Jancke, H. and Müller, D.; Z. Anorg. Allg. Chem. 576, 160168 (1989).Google Scholar
16 Hoebbel, D., Pitsch, I., Grimmer, A.-;R., Jancke, H., Hiller, W. and Harris, R.K.; Z. Chem. 29, 260–261 (1989).Google Scholar
17 Hasegawa, I. and Motojima, S.; J. Organomet. Chem. 441, 373 (1992).Google Scholar
18 Agaskar, PA.; Inorg. Chem. 29, 1603 (1990).Google Scholar
19 Pitsch, I., Hoebbel, D., Jancke, H. and Hiller, W., Z. Anorg. Allg. Chem. 596, 63–72 (1991).Google Scholar
20 Hoebbel, D., Reinert, T., Endres, K., Schmidt, H., Kayan, A. and Arpac, E., Proc. of the First European Workshop on Hybrid Organic-Inorganic Materials (Bierville, France, 1993), pp 319323.Google Scholar
21 Pitsch, I., Thesis, Universitat Rostock, 1992.Google Scholar
22 Hoebbel, D., Endres, K., Reinert, T. and Pitsch, I., submitted to J. Non-Cryst. Solids (1994).Google Scholar
23 Hoebbel, D., Pitsch, I., Heidemann, D., Jancke, H. and Hiller, W., Z. Anorg. Allg. Chem. 583, 133144 (1990).Google Scholar
24 Hoebbel, D., Pitsch, I. and Heidemann, D., Z. Anorg. Allg. Chem. 592, 207216 (1991).Google Scholar
25 Kölsch, P., Pitsch, I., Schultze, D., Heidemann, D. and Hoebbel, D., J. Therm. Anal, in press (1994).Google Scholar
26 Meissner, E., Diploma, Universitat Rostock, 1992.Google Scholar
27 Shea, K.J., Loy, D.A. and Webster, O., J. Am. Chem. Soc. 114, 67006710 (1992).Google Scholar