Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T09:23:48.860Z Has data issue: false hasContentIssue false

A New Pressure Induced Phase in Silica

Published online by Cambridge University Press:  10 February 2011

J. R. Chelikowsky
Affiliation:
Department of Chemical Engineering and Materials Science, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455, USA
R. M. Wentzcovitch
Affiliation:
Department of Chemical Engineering and Materials Science, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455, USA
C. Da Silva
Affiliation:
Department of Chemical Engineering and Materials Science, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455, USA
N. Binggeli
Affiliation:
Institut de Physique Appliquée, Ecole Polytechnique Fédérale de Lausanne, PHB-Ecublens, 1015 Lausanne, Switzerland
Get access

Abstract

We predict a new pressure induced phase for silica via first principles variable-cell-shape molecular dynamics. The structure results from annealing a-quartz at pressures near a phonon instability. The mechanism which produces this new phase is similar to that proposed for structural transitions in silicate melts. The diffraction pattern of the new phase compares favorably with that of the unidentified intermediate crystal phase found in silica near the pressure induced amorphization transformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ponyatovsky, E. G. and Barkalov, O. I., Mater. Sci. Rep. 8, 147 (1992).Google Scholar
2. Kingma, K. J., Meade, C., Hemley, R. J., Mao, H.K., and Veblen, D. R., Science 259, 569 (1993).Google Scholar
3. Kingma, K. J., Hemley, R. J., Mao, H.K., and Veblen, D. R., Phys. Rev. Lett. 70, 3927 (1993).Google Scholar
4. Chaplot, S. L. and Sikka, S. K., in Proceedings of the XIII AIRAPT International Conference of High Pressure Science and Technology, Bangalore, 1991, edited by Singh, A. K. (Oxford and IBH Publishing Co., New Delhi, 1992), p. 259; Solid State Phys. (India) 33c, 328 (1990).Google Scholar
5. Chaplot, S. L. and Sikka, S. K., Phys. Rev. Lett. 71, 2674 (1994).Google Scholar
6. Binggeli, N., and Chelikowsky, J. R., Phys. Rev. Lett. 71, 2675 (1994).Google Scholar
7. Binggeli, N., Keskar, N., and Chelikowsky, J. R., Phys. Rev. B 49, 3075 (1994).Google Scholar
8. Binggeli, N., and Chelikowsky, J. R., Phys. Rev. Lett. 69, 2220 (1992).Google Scholar
9. For a review see Hemley, R. J., Prewitt, C. T., and Kingma, K. J., Reviews of Mineralogy 29, (1994).Google Scholar
10. McNeil, L. E., and Grimsditch, M., Phys. Rev. Lett. 68, 83 (1992).Google Scholar
11. Kruger, M. B. and Jeanloz, R., Science 249, 647 (1990).Google Scholar
12. Polian, A., Grimsditch, M., and Philippot, E., Phys. Rev. Lett. 71, 3143 (1993).Google Scholar
13. Stolper, E. M. and Ahrens, T. J., Geophys. Res. Lett. 14, 1231 (1987).Google Scholar
14. Wentzcovitch, R. M., Quantum Theory of Real Materials, Editors: Chelikowsky, J. R. and Louie, S. G., Kluwer Acad. Pub., Dordrecht, (1995) 113.Google Scholar
15. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964);Google Scholar
Kohn, W. and Sham, L. J., Phys. Rev., 140, A1133 (1965).Google Scholar
16. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
17. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1981).Google Scholar
18. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).Google Scholar
19. The theoretical x-ray intensity patterns were evaluated using the atomic scattering factors from the International Tables of X-Ray Crystallography (Kynoch Press, Birmingham, 1962), p. 202203; a diffraction angle of 5° and a Gaussian broadening with a 0.5 eV full width at half maximum were used to generate the energy dispersive spectra.Google Scholar
20. Angel, R. J., Ross, N. L., Seifert, F., and Fliervoet, T. F., Nature 384, 441 (1996).Google Scholar
21. Badro, J., Barrat, J. L., and Gillet, P., Phys. Rev. B 76, 772 (1996).Google Scholar
22. Wentzcovitch, R.M., Chelikowsky, J.R., da Silva, C. and Binggeli, N., to be published.Google Scholar
23. Teter, D. M., Ita, J.J., Hemley, R.J., Mao, H.K., and Prewitt, C.T., Bull. Am. Phys. Soc. 42, 511 (1997).Google Scholar