Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:54:46.603Z Has data issue: false hasContentIssue false

A New Pathway for Si Nanocrystal Formation: Oxi-Reduction Induced by Impurity Implantation

Published online by Cambridge University Press:  15 February 2011

L.G. Jacobsohn
Affiliation:
Materials Science & Technology Division, Los Alamos National Laboratory MST-8 G755, P.O. Box 1663, Los Alamos, NM 87545, USA
A.R. Zanatta
Affiliation:
Instituto de Física de São Carlos, Universidade de São Paulo Caixa Postal 369, 13560-250 São Carlos, SP, Brazil
J.K. Lee
Affiliation:
Materials Science & Technology Division, Los Alamos National Laboratory MST-8 G755, P.O. Box 1663, Los Alamos, NM 87545, USA
D.W. Cooke
Affiliation:
Materials Science & Technology Division, Los Alamos National Laboratory MST-8 G755, P.O. Box 1663, Los Alamos, NM 87545, USA
B.L. Bennett
Affiliation:
Materials Science & Technology Division, Los Alamos National Laboratory MST-8 G755, P.O. Box 1663, Los Alamos, NM 87545, USA
C.J. Wetteland
Affiliation:
Materials Science & Technology Division, Los Alamos National Laboratory MST-8 G755, P.O. Box 1663, Los Alamos, NM 87545, USA
J.R. Tesmer
Affiliation:
Materials Science & Technology Division, Los Alamos National Laboratory MST-8 G755, P.O. Box 1663, Los Alamos, NM 87545, USA
M. Nastasi
Affiliation:
Materials Science & Technology Division, Los Alamos National Laboratory MST-8 G755, P.O. Box 1663, Los Alamos, NM 87545, USA
Get access

Abstract

In this work we show the feasibility of producing silicon nanocrystals by means of a new method based on the oxi-reduction of silicon dioxide induced by the presence of an impurity and annealing. The choice of magnesium as the impurity relies on its chemical properties of oxireducing the SiO2 matrix while avoiding the formation of Si-based compounds. The samples were obtained by 3×1016 and 1×1017 at/cm2 ion implantation into fused silicon dioxide followed by annealing in vacuum at 900 °C for 2 or 10 h. Rutherford backscattering spectrometry (RBS) characterized the chemical content and the Mg depth distribution. In all cases, photoluminescence measurements that showed a broad band starting around 1.8 eV with increasing emission intensity for lower energies, indicating the presence of Si nanocrystals. The analysis of the photoluminescence data in the framework of the quantum confinement theory suggests the existence of relatively large Si nanocrystals. The presence of these nanocrystals was also confirmed by Raman spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L.T., Appl. Phys. Lett., 59, 1046 (1990)Google Scholar
2. Shimizu-Iwayama, T., Ohshima, M., Niimi, T., Nakao, S., Saitoh, K., Fujita, T. and Itoh, N., J. Phys. Condens. Matter., 5, L375 (1993).Google Scholar
3. Mutti, P., Ghislotti, G., Bertoni, S., Bonoldi, L., Cerofolini, G.F., Meda, L., Grilli, E. and Guzzi, M., Appl. Phys. Lett., 66, 851 (1995)Google Scholar
4. Delerue, C., Allan, G. and Lannoo, M., Phys. Rev. B, 48, 11024 (1993)Google Scholar
5. Ledoux, G., Guillois, O., Porterat, D., Reynaud, C., Huisken, F., Kohn, B. and Paillard, V., Phys. Rev. B, 62, 15942 (2000)Google Scholar
6. Ledoux, G., Gong, J., Huisken, F., Guillois, O. and Reynaud, C., Appl. Phys. Lett., 80, 4834 (2002)Google Scholar
7. Wilcoxon, J.P., Samara, G.A. and Provencio, P.N., Phys. Rev. B,60, 2704 (1999)Google Scholar
8. Allan, G., Delerue, C. and Lannoo, M., Phys. Rev. Lett., 76, 2961 (1996)Google Scholar
9. Hunt, E.M. and Hampikian, J.M., Acta. Mater., 47, 1497 (1999)Google Scholar
10.http://www.srim.org/Google Scholar
11. Fitting, H.J., Barfels, T., Trukhin, A.N., Schmidt, B., Gulans, A., Czarnowski, A. von, J. Non-Cryst. Solids, 303, 218 (2002)Google Scholar
12. Sakurai, Y., J. Non-Cryst. Solids, 276, 159 (2000)Google Scholar
13. Martin-Palma, R.J., Pascual, L., Herrero, P. and Martinez-Duart, J.M., Appl. Phys. Lett., 81, 25 (2002)Google Scholar
14. Zhuralev, K.S., Gilinsky, A.M. and Kobitsky, A.Yu., Appl. Phys. Lett., 73, 2962, (1998).Google Scholar
15. Shimizu-Iwayama, T., Terao, Y., Kamiya, A., Takeda, M., Nakao, S. and Saitoh, K., Thin Solid Films, 276, 104, (1996).Google Scholar
16. Galeener, F.L. and Lucovsky, G., Phys. Rev. Lett., 37, 1474 (1976)Google Scholar
17. Galeener, F.L., Solid State Commun., 44, 1037 (1982)Google Scholar
18. Iqbal, Z. and Veprek, S., J. Phys. C: Solid State Phys., 15, 377 (1982)Google Scholar
19. Mishra, P. and Jain, K.P., Mat. Scie. Eng. B, 95, 202 (2002)Google Scholar
20. Bockelmann, H.K. and Schlecht, R.G., Phys. Rev. B, 10, 5225 (1974)Google Scholar
21. Ishikawa, K., Fujima, N. and Komura, H., J. Appl. Phys., 57, 973 (1985)Google Scholar
22. Eysel, H.H. and Thym, S., Anorg, Z.. Allg. Chim., 411, 97 (1975)Google Scholar
23. Onari, S. and Cardona, M., Phys. Rev. B, 14, 3520 (1976)Google Scholar
24. Raptis, Y.S., Kourouklis, G.A., Anastassakis, E., Haro-Poniatowski, E. and Balkanski, M., J.Physique, 48, 239 (1987)Google Scholar
25. Liu, L.G., Mernagh, T.P. and Irifune, T., J. Phys. Chem. Solids, 55, 185 (1994)Google Scholar
26. Ghose, S., Choudhury, N., Chaplot, S.L., and, C.P. Chowdhury Sharma, S.K., Phys. Chem. Minerals, 20, 469 (1994)Google Scholar
27. Brandes, E.A. (editor), Smithells Metals Reference Book (Butterworths & Co. Publishers, London, 6th edition, 1983) p. 8–21 to 835.Google Scholar
28. Lide, D.R. (editor), CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 78 th edition, 1997) p. 581.Google Scholar
29. Samsonov, G.V. (editor), The Oxide Handbook (Plenum Publishing Corp., New York, 2 nd edition, 1982) p.51.Google Scholar
30. Davidson, A.T., Comins, J.D., Raphuthi, A.M.J., Kozakiewicz, A.G., Sendezera, E.J. and Derry, T.E., J. Phys. Condens. Matter, 7, 3211 (1995)Google Scholar
31. Davidson, A.T., Kozakiewicz, A.G., Comins, J.D. and Derry, T.E., Nuc. Instrum. Meth. B, 116, 216 (1996)Google Scholar
32. Magruder, R.H. III , Weeks, R.A., Weller, R.A., Zuhr, R.A. and Hensley, D.K., J. Non-Cryst. Solids, 259, 73 (1999)Google Scholar
33. Dohguchi, N., Munekuni, S., Nishikawa, H. and Ohki, Y., J. Appl. Phys, 70, 2788 (1991)Google Scholar