Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:53:06.646Z Has data issue: false hasContentIssue false

A new mild synthesis and optical properties of colloidal ZnO nanocrystals in dimethylformamide/ethanol solutions

Published online by Cambridge University Press:  19 November 2013

Yaroslav V. Panasyuk
Affiliation:
L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky av., 03028, Kyiv, Ukraine
Oleskandra E. Rayevska
Affiliation:
L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky av., 03028, Kyiv, Ukraine
Oleksandr L. Stroyuk
Affiliation:
L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky av., 03028, Kyiv, Ukraine
Stepan Ya. Kuchmiy
Affiliation:
L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky av., 03028, Kyiv, Ukraine
Get access

Abstract

A green and mild synthesis of colloidal zinc oxide nanocrystals in ethanol/dimethylformamide mixtures was introduced which allows to produce stable crystalline ZnO particles and tailor their average size in the range of 2.8−4.5 nm by varying temperature and duration of post-synthesis ageing. An increase in dimethylformamide fraction in the mixture results in acceleration of ZnO nanocrystals ripening. Colloidal ZnO nanocrystals emit broadband photoluminescence in the range of 2−3 eV with the quantum yields of up to 12 %.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Semiconductor nanocrystal quantum dots: synthesis, assembly, spectroscopy and applications, ed. by A. Rogach, Springer-Verlag GmbH, Vienna, 2008.Google Scholar
Haase, M., Weller, H., Henglein, A., J. Phys. Chem. 92, 482487 (1988).Google Scholar
Bahnemann, D.W., Kormann, C., Hoffmann, M.R., J. Phys. Chem. 91, 37893789 (1987).CrossRefGoogle Scholar
Spanhel, L., Anderson, M.A., J. Amer. Chem. Soc. 112, 22782284 (1990).CrossRefGoogle Scholar
van Dijken, A, Meulenkamp, E.A., Vanmaekelbergh, D., Meijerink, A., J. Lumin. 87-89, 454456 (2000).CrossRefGoogle Scholar
Kamat, P.V., Patrick, B., J. Phys. Chem. 96, 68296834 (1992).CrossRefGoogle Scholar
Stroyuk, O.L., Dzhagan, V.M., Shvalagin, V.V., Kuchmiy, S.Ya., J. Phys. Chem. C 114, 220225 (2010).CrossRefGoogle Scholar
Zhou, J.-F., Ao, J., Xia, Y.-Y., Xiong, H.-M., J. Colloid Interface Sci. 393, 8086 (2013).CrossRefGoogle Scholar