Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T11:39:11.897Z Has data issue: false hasContentIssue false

A New Lithium Iron Phosphate LiFe2P3O10 Synthesized at 600 °C from Precursor Obtained by Wet Chemistry

Published online by Cambridge University Press:  26 February 2011

Atmane Ait-Salah
Affiliation:
[email protected], University Paris 6, INSP, 140 rue de Lourmel, Paris, 75015, France
Chintalapalle V Ramana
Affiliation:
[email protected], University of Michigan, Dept of Geological Sciences, Ann Arbor, MI, 48109, United States
François Gendron
Affiliation:
[email protected], University Parisd 6, INSP, 140 rue de Lourmel, Paris, 75015, France
Jean-François Morhange
Affiliation:
[email protected], University Paris 6, INSP, 140 rue de Lourmel, Paris, 75015, France
Alain Mauger
Affiliation:
[email protected], CNRS, MPPU, 140 rue de Lourmel, Paris, 75015, France
Mohamed Selmane
Affiliation:
[email protected], University Paris 6, INSP, 140 rue de Lourmel, Paris, 75015, France
Christian M Julien
Affiliation:
[email protected], University Paris 6, INSP, 140 rue de Lourmel, Paris, 75015, France
Get access

Abstract

We present the synthesis and characterization of a novel lithium iron polyphosphate LiFe2P3O10 prepared by wet-chemical technique from nitrate precursors. The crystal system is shown to be monoclinic (P21/m space group) and the refined cell parameters are a=4.596 Å, b=8.566 Å, c=9.051 Å and β=97.46°. LiFe2P3O10 has a weak antiferromagnetic ordering below the Néel temperature TN =19 K. Electrochemical measurements carried out at 25 °C in lithium cell with LiPF6-EC-DEC electrolyte show a capacity 70 mAh/g in the voltage range 2.7-3.9 V.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B., J. Electrochem. Soc. 144, 1188 (1997).Google Scholar
2. Ravet, N., Chouinard, Y., Magnan, J.F., Besner, S., Gauthier, M., Armand, M., J. Power Sources 97, 503 (2001).Google Scholar
3. Zaghib, K., Striebel, K., Guerfi, A., Shim, J., Armand, M., Gauthier, M., Electrochim. Acta 50, 263 (2004).Google Scholar
4. Ait-Salah, A., Mauger, A., Julien, C.M., Gendron, F., Mater. Sci. Eng. B 129, 232 (2006).Google Scholar
5. Ait-Salah, A., Mauger, A., Zagib, K., Goodenough, J.B., Ravet, N., Gauthier, M., Gendron, F., Julien, C.M., J. Electrochem. Soc. 153, A1692 (2006).Google Scholar
6. Ravet, N., Chouinard, Y., Magnan, J.F., Besner, S., Gauthier, M., Armand, M., J. Power Sources 97–98 (2001) 403.Google Scholar
7. Toby, B.H., J. Appl. Cryst. 34 (2001) 210 Google Scholar
8. Erragh, F., Boukhari, A., Holt, E.M., Acta Cryst. C 52, 1867 (1996).Google Scholar
9. Ramana, C.V., Ait-Salah, A., Utsunomiya, S., Morhange, J.F., Mauger, A., Gendron, F., Julien, C.M., J. Phys. Chem. C 111, 1049 (2007).Google Scholar
10. Rissouli, K., Benkhouja, K., Sadel, A., Bettach, M., Zahir, M., Giorgi, M., Pierrot, M., Drillon, M., Eur. J. Solid State Inorg. Chem. 34, 221 (1997).Google Scholar
11. Ait-Salah, A., Jozwiak, P., Garbarczyk, J., Benkhouja, K., Zaghib, K., Gendron, F., Julien, C.M., J. Power Sources 140, 370 (2005).Google Scholar