Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T00:22:21.573Z Has data issue: false hasContentIssue false

New Insights Into Oxide Trapped Holes And Other Defects: Implications For Reliability Studies

Published online by Cambridge University Press:  15 February 2011

Timothy R. Oldham
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783
Aivars J. Lelis
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783
Get access

Abstract

New insights into the nature of oxide trapped holes and other defects have been gained from ionizing radiation studies. Specifically, connections have been established between hole traps and neutral traps. The nature of the defects, how they are related to each other, and their implications for reliability studies will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Winokur, P.S., Chapter 4 of Ionizing Radiation Effects in MOS Devices and Circuits, Wiley-Interscience, New York, 1989.Google Scholar
2. Oldham, T.R., McLean, F.B., Boesch, H.E. Jr., and McGarrity, J.M., Semiconductor Sci. Technol., 4, 986 (1989).Google Scholar
3. Deal, B.E., Sklar, M., Grove, A.S., and Snow, E.H., J. Electrochem. Soc., 114, 266 (1967).Google Scholar
4. Deal, B.E., J. Electrochem. Soc., 121, 198C (1974).Google Scholar
5. Feigl, F.J., Fowler, W.B., and Yip, K.L., Solid State Commun., 14, 225 (1974).Google Scholar
6. Lenahan, P.M. and Dressendorfer, P.V., J. Appl. Phys., 55, 3495 (1984).Google Scholar
7. Schwank, J. R., Winokur, P.S., McWhorter, P.J., Sexton, F.W., Dressendorfer, P.V., and Turpin, D.C., IEEE Trans. Nucl. Sci., NS–31, 1434 (1984).Google Scholar
8. Dozier, C.M., Brown, D.B., Throckmorton, J.L., and Ma, D.I., IEEE Trans. Nucl. Sci., NS–32, 4363 (1985).Google Scholar
9. Oldham, T.R., Lelis, A.J., and McLean, F.B., IEEE Trans. Nucl. Sci., NS–33, 1203 (1986).Google Scholar
10. Lelis, A.J., Boesch, H.E. Jr., Oldham, T.R., and McLean, F.B., IEEE Trans. Nucl. Sci., NS–35, 1186 (1988).Google Scholar
11. Lelis, A.J., Oldham, T.R., Boesch, H.E. Jr., and McLean, F.B., IEEE Trans. Nucl. Sci., NS–36, 1808 (1988).Google Scholar
12. Shanfield, Z., Brown, G.A., Revesz, A.G., and Hughes, H., IEEE Trans. Nucl. Sci., NS–39, 303 (1992).Google Scholar
13. Fleetwood, D.M., Reber, R.A., and Winokur, P.S., IEEE Trans. Nucl. Sci., NS–38, 1066 (1991).Google Scholar
14. Freitag, R.K., Brown, D.B., and Dozier, C.M., IEEE Trans. Nucl. Sci., NS–40, 1316 (1993).Google Scholar
15. Freitag, R.K., Brown, D.B., and Dozier, C.M., IEEE Trans. Nucl. Sci., NS–41, 1828 (1994).Google Scholar
16. Fleetwood, D.M., Warren, W.L., Schwank, J.R., Winokur, P.S., Shaneyfelt, M.R., and Riewe, L.C., IEEE Trans. Nucl. Sci., NS–42, 1698 (1995).Google Scholar
17. Edwards, A.H. and Fowler, W.B., J. Phys. Chem. Solids, 46, 841 (1985).Google Scholar
18. Conley, J.F. Jr., Lenahan, P.M., Lelis, A.J., and Oldham, T.R., Appl. Phys. Lett., 67, 2179 (1995).Google Scholar
19. Conley, J.F. Jr., Lenahan, P.M., Lelis, A.J., and Oldham, T.R., IEEE Trans. Nucl. Sci., NS–42, 1744 (1995).Google Scholar
20. Young, D.R., Irene, E.A., DiMaria, D.J., DeKeersmaecker, R.F., and Massoud, H.Z., J. Appl. Phys., 50, 6366 (1979).Google Scholar
21. Gdula, R.A., J. Electrochem. Soc. 123, 42 (1976).Google Scholar
22. Trombetta, L.P., Gerardi, G.J., DiMaria, D.J., and Tierney, E., J. Appl. Phys., 64, 2434 (1988).Google Scholar
23. Lelis, A.J. and Oldham, T.R., IEEE Trans. Nucl. Sci., NS–41, 1835 (1994).Google Scholar
24. Fleetwood, D.M., IEEE Trans. Nucl. Sci., NS–39, 269 (1992).Google Scholar
25. Walters, M. and Reisman, A., J. Electrochem. Soc., 138, 2756, (1991).Google Scholar
26. Aitken, J.M., J. Non-Cryst. Solids, 40, 31 (1980).Google Scholar
27. Aitken, J.M., Young, D.R., and Pan, K., J. Appl. Phys., 49, 3386 (1978).Google Scholar
28. Nicollian, E.H. and Berglund, C.N., J. Appl. Phys., 41, 3052 (1970).Google Scholar
29. Nicollian, E.H., Berglund, C.N., Schmidt, P.F., and Andrews, J.M., J. Appl. Phys., 42, 5654 (1971).Google Scholar
30. Reisman, A. and Merz, C.J., J. Electrochem. Soc., 130, 1384 (1983).Google Scholar
31. Reisman, A., Williams, C.K, and Maldonado, J.R., J. Appl. Phys., 62, 868 (1987).Google Scholar
32. Hsu, C.C.H., Nishida, T., and Sah, C.T., J. Appl. Phys., 63, 5882 (1988).Google Scholar
33. DiMaria, D.J., Appl. Phys. Lett., 51, 655 (1987).Google Scholar
34. DiMaria, D.J., Cartier, E., and Arnold, D., J. Appl. Phys., 73, 3367 (1993).Google Scholar
35. DiMaria, D.J., Arnold, D., and Cartier, E., Appl. Phys. Lett., 61, 2329 (1992).Google Scholar
36. Amolld, D., Cartier, E., and DiMaria, D.J., Phys. Review B, 49, 10278 (1994).Google Scholar
37. DiMaria, D.J. and Stathis, J.H., J. Appl. Phys., 70, 1560 (1991).Google Scholar
38. Fischetti, M.V., DiMaria, D.J., Brorson, S.D., Theis, T.N., and Kirtley, J.R., Phys. Review B, 31, 8124 (1985).Google Scholar
39. Feigl, F.J., Young, D.R., DiMaria, D.J., Lai, S., and Culise, J., J. Appl. Phys., 52, 5665 (1981).Google Scholar
40. DiMaria, D.J., J. Appl. Phys., 68, 5234 (1990).Google Scholar
41. DiMaria, D.J. and Stasiak, J.W., J. Appl. Phys., 65, 2342 (1989).Google Scholar
42. Brorson, S.D., DiMaria, D.J., Fischetti, M.V., Pesavento, F.L., Solomon, P.M., and Dong, D.W., J. Appl. Phys., 58, 1302 (1985).Google Scholar
43. DiMaria, D.J., Theis, T.N., Kirtley, J.R., Pesavento, F.L., Dong, D.W., and Brorson, S.D., J. Appl. Phys., 57, 1214 (1985).Google Scholar
44. Handbook of Chemistry and Physics, edited by Weast, R.C., Astle, M.J., and Beger, W.H., CRC Press, Boca Raton, FL, 1987.Google Scholar
45. Aslam, M., IEEE Trans. Electron Devices, ED–34, 2535 (1987).Google Scholar
46. Dumin, D.J., Mopuri, S.K., Vanchinathan, S., Scott, R.S., Subramoniam, R., and Lewis, T.G., IEEE Trans. Electron Devices, ED–42, 760 (1995).Google Scholar
47. Lee, J.C., Chen, I.C., and Hu, C.M., IEEE Trans. Electron Devices, ED–35, 2268 (1988).Google Scholar
48. DiStefano, T.H. and Schatzkes, M., J. Vac. Sci. Technol., 13, 50 (1976).Google Scholar
49. Solomon, P., J. Vac. Sci. Technol., 14, 1122 (1977).Google Scholar
50. Harari, E., J. Appl. Phys., 49, 2478 (1977).Google Scholar
51. Harari, E., Appl. Phys. Left., 30, 601 (1977).Google Scholar
52. Chen, I.C., Holland, S.E., and Hu, C.M., IEEE J. Solid State Circuits, SC–20, 333 (1985).Google Scholar
53. Chen, I.C., Choi, J.Y., Chan, T.Y., and Hu, C.M., IEEE Trans. Electron Devices, 2253 (1988).Google Scholar
54 Lee, J.C., Chen, I.C., and Hu, C.M., IEEE Trans. Electron Devices, ED–35, 2268 (1988).Google Scholar
55. Holland, S. and Hu, C., J. Electrochem. Soc., 133, 1705 (1986).Google Scholar
56. Chen, I.C., Holland, S., Young, K.K., Chang, C., and Hu, C., Appl. Phys. Lett., 49, 669 (1986).Google Scholar
57. Chen, I.C., Holland, S., and Hu, C., IEEE Electron Device Left., EDC–7, 164 (1986).Google Scholar
58. Hao, M.Y., Chen, W.M., Lai, K., Lee, J.C., Gardner, M., and Fulford, J., Appl. Phys. Let., 66, 1126 (1995).Google Scholar
59. Schuegraf, K.F. and Hu, C., IEEE Int. Rel. Phys. Symp. Proc., 32, 126 (1994).Google Scholar
60. Apte, P. and Saraswat, K., IEEE Int. Rel. Phys. Symp. Proc., 32, (1994).Google Scholar
61. Dumin, D.J., Mopuri, S., Vanchinathan, S., Scott, R.S., Subramonian, R., and Lewis, T.G., IEEE Int. Rel. Phys. Symp. Proc., 32, 143 (1994).Google Scholar
62. Kimura, M. and Koyama, H., IEEE Int. Rel. Phys. Symp. Proc., 32,167 (1994).Google Scholar
63. Miki, H., Noguchi, M., Yokogawa, K., Kim, B.W., Asada, K., and Sugano, T., IEEE Trans. Electron Devices, ED–35, 2245 (1988).Google Scholar