Published online by Cambridge University Press: 21 February 2011
New insight into damage formation in Si(100) during self-ion irradiation is gained from processing under extreme conditions. Dislocations form in the near-surface as a result of lattice relaxation in response to strain produced by precursor defects which are shown to be vacancy-type by positron analysis. A model to account for these defects and their distribution is presented. A novel technique is demonstrated which utilizes a subsequent implantation as a depth specific probe to manipulate the vacancy-type defects. Aspects of damage growth which emerge from the probe results are discussed.