Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:51:05.591Z Has data issue: false hasContentIssue false

New Insight into Damage-Related Phenomena in Si Implanted Under Extreme Conditions

Published online by Cambridge University Press:  21 February 2011

O. W. Holland
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6048
Bent Nielsen
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973.
J. D. Budai
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6048
Get access

Abstract

New insight into damage formation in Si(100) during self-ion irradiation is gained from processing under extreme conditions. Dislocations form in the near-surface as a result of lattice relaxation in response to strain produced by precursor defects which are shown to be vacancy-type by positron analysis. A model to account for these defects and their distribution is presented. A novel technique is demonstrated which utilizes a subsequent implantation as a depth specific probe to manipulate the vacancy-type defects. Aspects of damage growth which emerge from the probe results are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 See for example: Gibbons, James F., Proceedings of the IEEE 60, 1062 (1972); O. W. Holland, S. J. Pennycook, and Gerald L. Albert, Appl. Phys. Lett. 55, 2503 (1989); O. W. Holland and C. W. White, Nucl. Instr. Meth. B59, 353 (1991) and references within.Google Scholar
2 Linnros, J., Elliman, R. G., and Brown, W. L., J. Mater. Res. 3, 1208 (1988).Google Scholar
3 Hosack, H. H., Houston, T. W., and Pollack, G. P., Sol. State Tech. 12, 61 (1990).Google Scholar
4 Guerra, M. A., Sol. State Tech. 11, 75 (1990).Google Scholar
5 Celler, G. K. and White, A. E., Mat. Res. Soc. Bull. 6, 40 (1992).Google Scholar
6 Peters, Laura, “Semiconductor International,” March 1993, p. 48.Google Scholar
7 Holland, O. W., Sjoreen, T. P., Fathy, D., and Narayan, J., Appl. Phys. Lett. 45, 10 (1984).Google Scholar
8 van Ommen, A. H. and Viegers, M. P. A., Appl. Surf. Sci. 30, 383 (1987).Google Scholar
9 Biersack, J. and Haggmark, L., Nucl. Instr. and Meth. 174, 257 (1980).Google Scholar
10 Holland, O. W., Zhou, D. S., and Thomas, D. K., Appl. Phys. Lett. 63, 896 (1993).Google Scholar
11 Zhou, D. S., Holland, O. W., and Budai, J. D., Appl. Phys. Lett. 63, 3580 (1993).Google Scholar
12 Schultz, Peter J. and Lynn, K. G., Review of Modern Physics 60, 701 (1988).Google Scholar
13 Mazzone, A. M., Phys. Status Solids A 95, (1986) 149; and K. Touhouche, J. Jackman, and A. Yelon, Nucl. Instr. and Meth. B 80/81, (1993) 857.Google Scholar
14 Holland, O. W., Xie, Ling, Nielsen, Bent, and Zhou, D. S., J. of Elect. Mat. (in press).Google Scholar
15 Holland, O. W., Thomas, D. K., and Zhou, D. S., Appl. Phys. Lett, (submitted).Google Scholar
16 Brinkman, J. A., J. Appl. Phys. 25, 961 (1954).Google Scholar
17 Brinkman, J. A., Amer. J. Phys. 24, 164 (1956).Google Scholar
18 Corbett, James W. and Karins, James P., Nucl. Instr. Meth. 182/183, 457 (1981) and references within.Google Scholar