Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T09:16:27.098Z Has data issue: false hasContentIssue false

New Inorganic-Organic Hybrid Polymers for Integrated Optics

Published online by Cambridge University Press:  10 February 2011

Christof Roscher
Affiliation:
Fraunhofer-Institut für Silicatforschung, D-97082 Würzburg, Germany
Ralf Buestrich
Affiliation:
Fraunhofer-Institut für Silicatforschung, D-97082 Würzburg, Germany
Peter Dannberg
Affiliation:
Fraunhofer-Institut für Angewandte Optik und Feinmechanik, D-07745 Jena, Germany
Oliver Rösch
Affiliation:
Robert Bosch GmbH, FV/FLD, P.O.B. 106050, D-70049 Stuttgart, Germany
Michael Popall
Affiliation:
Fraunhofer-Institut für Silicatforschung, D-97082 Würzburg, Germany
Get access

Abstract

New fluorinated inorganic-organic hybrid polymers (ORMOCER*s) for integrated optics were synthesized via hydrolysis and condensation (sol-gel processing) of functionalized pentafluorophenylalkoxysi lanes followed by organic crosslinking reactions. Process parameters (catalyst, temperature and ratio of educts) were optimized to achieve low transmission losses at the most important wavelengths for telecommunication in the NIR range: 1310 nm and 1550 nm.

The result is a photopatternable transparent ORMOCER (negative resist behavior) with excellent low losses: 0.20 dB/cm at 1310 nm and 0.30 dB/cm at 1550 nm.

Besides their high transparency the fluorinated ORMOCERs show a variety of other properties enabling their use as waveguide materials within the production of optoelectronic devices and related thin film technology: good wetting and adhesion on various substrates (e.g. glass, silicon and several polymers), low processing temperatures (postbake below 160 °C), high thermal stability (decomposition > 250°C) and a tunable refractive index.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 a) Davidson, E. E. et al. , CPMT Part B. 1997, 20 No. 4, 361375. b) W. Olbrich, Future Circuits International. 1997, 2, 133-138.Google Scholar
2 a) Judeinstein, P., Sanchez, C., J. Mater. Chem. 1996, 6, 511. b) J. Wen, G. L. Wilkes, Chem. Mater. 1996, 8, 1667. c) U. Schubert, N. Hoising, A. Lorenz, Chem. Mater. 1995, 7, 2010. d) M. Popall, J. Kappel, J. Schulz, H. Wolter, Micro System Technologies '94, edited by H. Reichl, A. Heuberger (VDE-Verlag, Berlin, 1994), 271-280.10.1039/JM9960600511Google Scholar
3 Roscher, C., Popall, M. in Better Ceramics Trough Chemistry VII, edited by Coltrain, B. K., Sanchez, C., Schaefer, D. W., Wilkes, G. L., Mat. Res. Soc. Symp. Proc. 1996, 435, 547552.10.1557/PROC-435-547Google Scholar
4 Sheppard, W. A., J. Amer. Chem. Soc. 1970, 92, 5419.10.1021/ja00721a021Google Scholar
5 Wittingham, A., Jarvie, A. W. P., J. Organometal. Chem. 1968, 13, 125.10.1016/S0022-328X(00)88863-4Google Scholar
6 Rösch, O. S., Buestrich, R., Popall, M., Dannberg, P., Müller-Fiedler, R., to be published. Google Scholar
7 Popall, M., Dabek, A., Robertson, M.E., Gustafsson, G., Hagel, O.J., Olsowski, B., Buestrich, R., Cergel, L., Lebby, M., Kiely, P., Joly, J., Lambert, D., Schaub, M. and Reichl, H., at Electronic Components and Technology Conference, Seattle, May 25-28 1998.Google Scholar