Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T13:36:01.957Z Has data issue: false hasContentIssue false

New Host-Guest Polymeric System for Thermal Stability Enhancement of Electro Optic Effect

Published online by Cambridge University Press:  01 February 2011

Seung Koo Park
Affiliation:
Wideband Photonic Device Team, ETRI, 161 Kajong-Dong, Yusong-Gu, Taejon 305-350, Korea
Jung Yun Do
Affiliation:
Wideband Photonic Device Team, ETRI, 161 Kajong-Dong, Yusong-Gu, Taejon 305-350, Korea
Jung-Jin Ju
Affiliation:
Wideband Photonic Device Team, ETRI, 161 Kajong-Dong, Yusong-Gu, Taejon 305-350, Korea
Suntak Park
Affiliation:
Wideband Photonic Device Team, ETRI, 161 Kajong-Dong, Yusong-Gu, Taejon 305-350, Korea
Myung-Hyun Lee
Affiliation:
Wideband Photonic Device Team, ETRI, 161 Kajong-Dong, Yusong-Gu, Taejon 305-350, Korea
Get access

Abstract

A new host-guest electro optic (EO) polymer, in which a chromophore can be reacted with the polymer main chain during poling to give the corresponding side-chain EO polymer, has been prepared for improving EO effect and its thermal stability. Polyisoimide (PII) synthesized from 2, 2-bis (4-aminophenyl) hexafluoropropane and oxydiphthalic anhydride and Disperse Red 1 (DR1) were used as a host and a guest, respectively. A model compound reaction and Infrared spectra of the host-guest film after annealing at various temperatures show that the reaction between the isoimide groups in PII and the hydroxyl groups in DR1 occurs around 140 °C. The glass transition temperatures of the resulting EO polyamic aicd ester-imide copolymer with 0, 10, 20 and 30 wt. % of chromophore concentration were 275, 219, 160, and 124 °C, respectively. The EO coefficient obtained at a wavelength of 1.55 νm was 5.3 and 10.5 pm/V from the EO polymer film with 20 and 30 wt. % DR1. The EO signals exhibited only a slight decay at high temperature due to the chemical reaction between the host and guest during poling.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Marder, S. M. Kippelen, B. Jen, A.K.-Y., and Peyghambarian, N. Nature 388, 845 (1997).Google Scholar
2. Chen, A. Chuyanov, V. Garner, S. Zhan, H. Steier, W. H. Chen, J. Zhu, J. Wang, F., He, M. Mao, H. and Dalton, L. R. Opt. Lett. 23, 478 (1998).Google Scholar
3. Harper, A. W. Sun, S. Dalton, L. R. Garner, S. M. Chen, A. Kalluri, S. and Steier, W. H., J. Opt. Soc. Am. B15, 329 (1998).Google Scholar
4. Lee, M.-H., Min, Y. H. Ju, J. J. Do, J. Y. and Park, S. K.. IEEE J. on Selected Topics in Quantum Electronics 7, 812 (2001).Google Scholar
5. Hayden, L. M. Sauter, G. F. Ore, F. R. Pasillas, P. L. Hoover, J. M. and Lindsay, G. A., J. Appl. Phys. 68, 456 (1990).Google Scholar
6. Dalton, L. R. Wu, B. Harper, A. W. Ghosn, R. Ra, Y. Liang, Z. Montgomery, R. Kalluri, S. Shi, Y. Steier, W. H. and Jen, A. K.-Y.Techniques of Ultrastructure Synthesis Relevant to the Fabrication of Electrooptic Modulators,” eds. Lindsay, G. A. and Singer, K. D. (Am. Chem. Soc. ACS Symp. Ser. 601, Washington, DC, 1994) pp.158171.Google Scholar
7. Kim, Y. J. and Park, H. P. Polym. Inter. 49, 8 (2000).Google Scholar
8. Teng, C. C. and Mann, H. T. Appl. Phy. Lett. 56, 1734 (1990).Google Scholar
9.F. W., Harris, “Synthesis of aromatic polyimides from dianhydrides and diamines,” Polyimides, eds. Wilson, D. Stenzenberger, H. D. and Hergenrother, P. M. (Blackie & Son, 1990) pp. 137.Google Scholar
10. Laius, L. A. Bessonov, M. I. Kallistova, Ye. V. Adrova, N. A. and Florinskii, F. S. Polym. Sci. USSR A9, 2470 (1967).Google Scholar
11. Sperling, L. H.Introduction to Physical Polymer Science” (Jonh Wiley & Sons, 2001) chapter 8.Google Scholar