Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T23:01:54.247Z Has data issue: false hasContentIssue false

New Electrically Conducting Solids based on Nickel (II) - Bis(1,3-Dithiole-2-Thione-4,5-Diselenolate)

Published online by Cambridge University Press:  25 February 2011

A. M. Kini
Affiliation:
Argonne National Laboratory, Chemistry and Materials Science Divisions, Argonne, IL 60439, U. S. A.
M. A. Beno
Affiliation:
Argonne National Laboratory, Chemistry and Materials Science Divisions, Argonne, IL 60439, U. S. A.
S. Budz
Affiliation:
Argonne National Laboratory, Chemistry and Materials Science Divisions, Argonne, IL 60439, U. S. A.
H. H. Wang
Affiliation:
Argonne National Laboratory, Chemistry and Materials Science Divisions, Argonne, IL 60439, U. S. A.
J. M. Williams
Affiliation:
Argonne National Laboratory, Chemistry and Materials Science Divisions, Argonne, IL 60439, U. S. A.
Get access

Abstract

Electrochemical oxidation of the metal-organic complex, nickel(II)–bis(1,3-dithiole-2-thione-4,5-diselenolate) or simply [Ni(dsit)2]2−, yields highly conducting salts, in which the stoichiometry and packing arrangement depends critically on the size of the counter-cations incorporated. Smaller counter-cations, e.g., tetramethylammonium and tetramethylphosphonium ions, yield salts with a 1:2 cation:[Ni(dsit)2] stoichiometry, while the larger tetraethylammonium ion yields a salt with 2:2 stoichiometry. In both these salts, the [Ni(dsit)2] units occur as tightly bound dimers, in which the coordination geometry of nickel is a unique, but not unprecedented square-pyramidal type. Moreover, the packing arrangement of [Ni(dsit)2]2 dimer units in both (Me4N)[Ni(dsit)2]2 and (Me4P) [Ni (dsit)2]2 is κ-type, similar to that found in the organic superconductor with the highest-known Tc (10.4 K), κ-(BEDT-TTF)2Cu(NCS)2. Both these salts possess good room temperature conductivities (σrt = 36 and 19 S.cm−1 respectively), but the temperature dependance of their conductivities is characteristic of semiconductors with small bandgaps (Eg = 0.11 and 0.13 eV, respectively). The 2:2 salt (Et4N)2[Ni(dsit)2]2, on the other hand, has a substantially lower room temperature conductivity, about six orders of magnitude smaller than that of the 1:2 salts. Its structure is characterized by [Ni(dsit)2]2 dimer units which are separated from each other by the tetraethylammonium cations, with no effective interaction between [Ni(dsit)2]2 dimers. It is suggested that dimeric metal-dithiolene and metal-diselenolene complexes may be potential building blocks in the structural design of κ-type organic conductors and superconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See e.g., Proceedings of the International Conference on Science and Technology of Synthetic Metals, Santa Fe, NM, U.S.A., June 26–July 2, 1988, Synth. Metals, 27–29, (1988–1989).Google Scholar
2. Urayama, H., Yamochi, H., Saito, G., Nozawa, K., Sugano, T., Kinoshita, M., Sato, S., Oshima, K., Kawamoto, A., Tanaka, J., Chem. Lett. 1988, 55.Google Scholar
3. Schirber, J. E., Venturini, E. L., Kini, A. M., Wang, H. H., Whitworth, J. R., Williams, J. M., Physica C, 152, 157 (1988).Google Scholar
4. Urayama, H., Yamochi, H., Saito, G., Sato, S., Kawamoto, A., Tanaka, A., Mori, T., Maruyama, Y., Inokuchi, H., Chem. Lett. 1988, 463.CrossRefGoogle Scholar
5. Carlson, K. D., Geiser, U., Kini, A. M., Wang, H. H., Montgomery, L. K., Kwok, W. K., Beno, M. A., Williams, J. M., Cariss, C. S., Crabtree, G. W., Whangbo, M.-H., Evain, M., Inorg. Chem. 21, 965 and 2904 (1988).Google Scholar
6. Kini, A. M., Beno, M. A., Carlson, K. D., Ferraro, J. R., Geiser, U., Schultz, A. J., Wang, H. H., Williams, J. M., in Proceedings of the First ISSP International Conference on the Physics and Chemistry of Organic Superconductors, Tokyo, Japan, August 27–30, 1989, edited by Saito, G. and Kagoshima, S., (Springer-Verlag, Heidelberg), in press.Google Scholar
7. Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry, 5th ed. (John Wiley & Sons, New York, 1988), p. 540.Google Scholar
8. Alcacer, L. and Novais, H., in Extended Linear Chain Compounds, Volume 3, edited by Miller, J. S. (Plenum Press, New York, 1983), p. 319.Google Scholar
9. Brossard, L., Ribault, M., Bousseau, M., Valade, L., Cassoux, P., C.R. Acad. Sc. Paris, Ser. II, 302, 205 (1986).Google Scholar
10. Kobayashi, A., Kim, H., Sasaki, Y., Kato, R., Kobayashi, H., Moriyama, S., Nishio, Y., Kajita, K., Sasaki, W., Chem. Lett. 1987, 1819.Google Scholar
11. Nigrey, P. J., Synth. Metals, 21, B365 (1988).Google Scholar
12. Lerstrup, K. A. and Cowan, D. O., de Physique, J., Colloque C3, 1983, 1247.Google Scholar
13. Valade, L., Legros, J-P., Bousseau, M., Cassoux, P., Garbauskas, M., Interrante, L. V., J. Chem. Soc. Dalton Trans. 1985, 783.Google Scholar
14. Kato, R., Kobayashi, H., Kim, H., Kobayashi, A., Sasaki, Y., Mori, T., Inokuchi, H., Synth. Metals, 27, B359 (1988).Google Scholar
15. Groeneveld, L. R., Schuller, B., Kramer, G. J., Haasnoot, J. G., Reedijk, J., Recl. Trav. Chim. Pays-Bas, 105, 507 (1986).CrossRefGoogle Scholar
16. Enemark, J. H. and Lipscomb, W. N., Inorg. Chem. 4, 1729 (1965).Google Scholar
17. Baker-Hawkes, M. J., Dori, Z., Eisenberg, R., Gray, H. B., J. Amer. Chem. Soc. 90 4253 (1968).CrossRefGoogle Scholar
18. Hamilton, W. C. and Bernal, I., Inorg. Chem. 6, 2003 (1967).Google Scholar
19. Schultz, A. J. and Eisenberg, R., Inorg. Chem. 12, 518 (1973).Google Scholar