Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T13:26:54.407Z Has data issue: false hasContentIssue false

New DLTS Peaks Associated with New Donors and Rodlike Defects in Czochralski Silicon

Published online by Cambridge University Press:  25 February 2011

Yoichi Kamiura
Affiliation:
Faculty of Engineering, Okayama University, Okayama 700, Japan
Fumio Hashimoto
Affiliation:
Faculty of Engineering, Okayama University, Okayama 700, Japan
Minoru Yoneta
Affiliation:
Faculty of Engineering, Okayama University, Okayama 700, Japan
Get access

Abstract

We have studied the effects of low-temperature preannealing and carbon on new donor formation at 650°C in phosphorus-doped Czochralski (CZ) silicon by deep-level transient spectroscopy (DLTS). In not preannealed carbon-lean samples, only a weak continuous DLTS spectrum often reported so far was observed. The intensity of this broad feature became significantly stronger in not preannealed carbon-rich samples. On the contrary, preannealed samples showed no such continuous spectra but two new DLTS peaks arising from shallow donor levels. Carbon enhanced the low-temperature peak, but retarded the high-temperature one. The latter peak is in strong correlation with the rodlike defect.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kanamori, A. and Kanamori, M., J. Appl. Phys. 50, 8095 (1979).Google Scholar
2 Cazcarra, V. and Zunino, P., J. Appl. Phys. 51, 4206 (1980).Google Scholar
3 Tajima, M., Kanamori, A., Kishino, S., and Iizuka, T., Jpn. J. Appl. Phys. 19, L755 (1980).Google Scholar
4 Leroueille, J., Phys. Status Solidi A 67, 177 (1981).Google Scholar
5 Ohsawa, A., Tanizawa, R., Honda, K., Shibatomi, A., and Ohkawa, S., J. Appl. Phys. 53, 5733 (1982).Google Scholar
6 Yasutake, K., Umeno, M., Kawabe, H., Nakayama, H., Nishino, T., and Hamakawa, Y., Jpn. J. Appl. Phys. 21, 28 (1982).Google Scholar
7 Gaworzewski, P. and Schmalz, K., Phys. Status Solidi A 77, 571 (1983).Google Scholar
8 Fukuoka, N., Jpn. J. Appl. Phys. 24, 1450 (1985).Google Scholar
9 Kung, C.Y., J. Appl. Phys. 61, 2817 (1987).Google Scholar
10 Schmalz, K. and Gaworzewski, P., Phys. Status Solidi A 64, 151 (1981).Google Scholar
11 Holzlein, K., Pensl, G., and Schulz, M., Appl. Phys. A 34, 155 (1984).Google Scholar
12 Holzlein, K., Pensl, G., Schulz, M., and Johnson, N.M., Appl. Phys. Lett. 48, 916 (1986).Google Scholar
13 Henry, A., Pautrat, J.L., and Saminadayar, K., J. Appl. Phys. 60, 3192 (1986).Google Scholar
14 Henry, A., Pautrat, J.L., Vendange, P., and Saminadayar, K., Appl. Phys. Lett. 49, 1266 (1986).Google Scholar
15 Bourret, A., Thibault-Desseaux, J., and Seidman, D.N., J. Appl. Phys. 55, 825 (1984).Google Scholar
16 Reiche, M. and Breitenstein, O., Phys. Status Solidi A 101, K97 (1987).Google Scholar
17 Bourret, A., Microscopy of Semiconducting Materials 1987, edited by Cullis, A.G. and Augustus, P.O., (Inst. Phys. Conf. Ser. 87, The Institute of Physics, London, 1987) pp. 3948.Google Scholar
18 Reiche, M., Reichel, J., and Nitzsche, W., Phys. Status Solidi A 107, 851 (1988).Google Scholar
19 Kamiura, Y., Hashimoto, F., and Yoneta, M., J. Appl. Phys. 65, 600 (1989).Google Scholar
20 Wright-Jenkins, M., J. Electrochem. Soc. 124, 757 (1977).Google Scholar
21 Kamiura, Y., Hashimoto, F., and Yoneta, M., J. Appl. Phys. 66, 3926 (1989).Google Scholar