Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T08:19:11.022Z Has data issue: false hasContentIssue false

New Developments in the Defect Structure of Implanted Furnace-Annealed Silicon on Sapphire

Published online by Cambridge University Press:  15 February 2011

Eliezer Dovid Richmond
Affiliation:
Naval Research Laboratory, Washington, DC 20375 (U.S.A.)
Alvin R. Knudson
Affiliation:
Naval Research Laboratory, Washington, DC 20375 (U.S.A.)
Tom J. Magee
Affiliation:
Advanced Research and Applications Corporation, Sunnyvale, CA 94088 (U.S.A.)
Get access

Abstract

The structural defect properties of silicon on sapphire (SOS) are investigated with transmission electron microscopy and Rutherford backscattering. The results for as-grown SOS films are compared with SOS films which have been implanted with 1016 Si+ ions cm− 2 at an energy of 170 keV and annealed at 600°C (1 h) and 1000°C (18 h). The regrowth proceeds from the silicon surface even though it is noncrystalline as determined by reflection high energy electron diffraction. The structural defects consist of stacking faults, microtwins and dislocations. The stacking faults and microtwins show a dramatic reduction with processing. The nature of the structural defects at the interface after implantation and annealing is reported here for the first time. It is different from the bulk of the silicon film and consists of a layer of dislocation loops of various sizes and short dislocation lines which follow the interface and curve upwards. This behavior is analogous with the secondary defects generated in self-implanted bulk silicon. Suggestions, based on results from bulk silicon implantation, are made for optimizing the ion implantation furnace annealing process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kinoshita, G. and Beguwela, M., Lambda, 70, 2nd Quarter (1981).Google Scholar
2 Cullen, G. W. and Wang, C. C. (eds.), Heteroepitaxial Semiconductors for Electronic Devices, Springer, New York, 1978.Google Scholar
3 Hamar-Thibault, S. and Trilhe, J., J. Electrochem. Soc., 128 (1981) 581, and references cited therein.Google Scholar
4 Lau, S. S., Matheson, S., Mayer, J. W., Revesz, P., Gyulai, J., Roth, J., Sigmon, T. W. and Cass, T., Appl. Phys. Lett., 34 (1979) 76.Google Scholar
5 Golecki, I. and Nicolet, M.-A., Solid-State Electron., 23 (1980) 803.CrossRefGoogle Scholar
6 Golecki, I., Kinoshita, G. and Paine, B. M., Nucl. Instrum. Methods, 182183 (1981) 675.Google Scholar
7 Inoue, T. and Yoshii, T., Appl. Phys. Lett., 36 (1980) 64.Google Scholar
8 Inoue, T. and Yoshii, T., Nucl. Instrum. Methods, 182183 (1981) 683.Google Scholar
9 Reedy, R. E. and Sigmon, T. W., J. Cryst. Growth, to be published.Google Scholar
10 Brice, D. K., Ion Implantation Range and Energy Deposition Distributions, Vol. 1, IFI-Plenum, New York, 1975.Google Scholar
11 von Allmen, M., Lau, S. S., Mayer, J. W. and Tseng, W. F., Appl. Phys. Lett., 35 (1979) 280.CrossRefGoogle Scholar
12 Glowinski, L. D., Tu, K. N. and Ho, P. S., Appl. Phys. Lett., 28 (1976) 312.CrossRefGoogle Scholar
13 Richmond, E. D., Proc. 1981 SOS Workshop, Sunriver, OR, October 1981.Google Scholar
13a Richmond, E. D. and Knudson, A. R., to be published.Google Scholar
14 Abrahams, M. S. and Buiocchi, C. T., Appl. Phys. Lett., 27 (1975) 325.Google Scholar
15 Richmond, E. D., unpublished, 1981.Google Scholar
16 Lau, S. S., J. Vac. Sci. Technol., 15 (1978) 1656.CrossRefGoogle Scholar
17 Nelson, R. S., Radiat. Eff., 32 (1977) 19.CrossRefGoogle Scholar
18 Linnington, P. F., Ph.D. Thesis, Cambridge University, 1974.Google Scholar
19 Nelson, R. S. in Dearnaley, G., Freeman, J. H., Nelson, R. S. and Stephen, J. (eds.), Ion Implantation, North-Holland, Amsterdam, 1973, p. 154.Google Scholar
20 Mader, S. and Michel, A. E., J. Vac. Sci. Technol., 13 (1976) 391.Google Scholar
21 Gibbons, J. E., Johnson, W. S. and Mylroie, S. W., Projected Range Statistics, Dowden, Hutchinson and Ross, Stroudsburg, PA, 2nd edn., 1975.Google Scholar
22 Schmitt, A. and Schorer, G., Appl. Phys., 22(1980) 137.Google Scholar
23 Liliental, B. and Auleytner, J., J. Phys. (Paris), Colloq. C6 (1979) 217.Google Scholar
24 Seshan, K. and Washburn, J., Radiat. Eff, 37 (1978) 147.CrossRefGoogle Scholar
25 Tamura, M., Ikeda, T. and Tokuyama, T. in Ruge, I. and Graul, J. (eds.), Ion Implantation in Semiconductors, Springer, New York, 1971, p. 96.Google Scholar
26 Mader, S. and Michel, A. E., Phys. Status Solidi A, 33 (1976) 793.Google Scholar
27 Tan, S. I., Berry, B. S. and Crowder, B. L., Appl. Phys. Lett., 20 (1972) 88.Google Scholar