Published online by Cambridge University Press: 22 August 2011
A recently discovered synthetic route to new kinetically stable [(MSe)y]m[TSe2]n layered intergrowths has been applied to prepare several different compositions (M = Pb or Sn, T = Ta, Nb, Mo, or W) with m = n = 1, in thin film form. Scanning transmission electron microscopy and synchrotron X-ray diffraction show the nanostructure of these materials is characterized by a combination of in-plane component crystallinity with misregistration and rotational mis-orientation between adjacent layers. Extremely low cross-plane thermal conductivity as low as 0.1 W m-1 K-1 are attributed to the turbostratic nanostructure. By appropriate choice of M and T, we demonstrate that a range of electrical transport properties are possible, from metallic to semiconducting. Annealing (PbSe)0.99WSe2 and (PbSe)1.00MoSe2 specimens in a controlled atmosphere of PbSe or WSe2 is observed to systematically influence carrier properties, and is interpreted in terms of reduction of the concentration of electrically active defects. Considering these observations and the large composition and structural space that can be explored in such [(MSe)y]m[TSe2]n intergrowths, these materials are of interest for further investigation as potential thermoelectric materials.