Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:15:36.045Z Has data issue: false hasContentIssue false

New Approaches for Dry Etching Metal Oxides at low Temperature and High Rates

Published online by Cambridge University Press:  25 February 2011

Francois Rousseau
Affiliation:
Chemistry Department, University of New Mexico, Albuquerque, NM 87131
A. Jain
Affiliation:
Chemical Engineering Department
L. Perry
Affiliation:
Chemical Engineering Department
J. Farkas
Affiliation:
Chemical Engineering Department
T. T. Kodas
Affiliation:
Chemical Engineering Department
M. J. Hampden-Smith
Affiliation:
Chemistry Department, University of New Mexico, Albuquerque, NM 87131
M. Paffett
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
R. Muenchausen
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

The reactions of metal oxides including CuO, ZnO, V2O5, and PbO with 1,1,1,5,5,5-hexaflouro- 2,4-pentanedione (hfacH) were investigated. A hot-wall reactor was used to react hfacH with metal oxide powders to form sufficient quantities of volatile reaction products for characterization by Infrared Spectroscopy (IR), Elemental Analysis (EA), Nuclear Magnetic Resonance (NMR), Mass Spectroscopy (MS), Thermogravimetric Analysis and Differential Thermal Analysis (DTA). PbO, ZnO and CuO powders reacted rapidly at 200 °C to form the corresponding metal β-diketonates and V2O5 reacted to give OV(hfac)2. A differential cold-wall reactor was to used to measure etch rates of CuOx films as a function of temperature and hfacH partial pressure. AES and XPS analysis of the laser ablation deposited CuOx film annealed in an O2 atmosphere revealed that the film was composed of CuO and Cu2O. Etch rates of up to a I l.βm/min at hfacH partial pressure of 1 Torr at 270 °C were obtained. Laser induced etching of the same CuOx film with hfacH showed evidence of copper oxide removal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. James, P.M., Thompson, E.J., and Ellis, A.B., Chem Maters., 3, 10871092, 1991.CrossRefGoogle Scholar
2. Trolier, S., Geist, C., Safari, A., Newnham, R.E., Xu, Q.C., Proc. IEEE Int. Symp. Appl. Ferroel., 6, 707 (1986).Google Scholar
3. Shiosaki, T., Masuda, H., Adachi, M., Kawabata, A., Ultrason, Symp. Proc., 2, 1115, (1987).Google Scholar
4. Asselanis, D., Mancha, S.D., U.S., 11, (1988).Google Scholar
5. Bohac, P.A.F., Patentschrift, 4, (1988).Google Scholar
6. Tenchev, S., Supercond. Science. Technology, 3 (10), 500 (1990).CrossRefGoogle Scholar
7. Kita, S., Tanabe, H., Kobayashi, T., IEEE Trans. Magn., 25 (2), 907–10 (1990).CrossRefGoogle Scholar
8. Wang, S., Cui, G., Dai, Y., Jiang, H., Zeng, X., Li, J., Bao, Z., Wang, S., Li, C., et al., IEEE Trans Magn., 25 (92), 893 (1989).CrossRefGoogle Scholar
9. Tam, A.C., Leung, W.P., and Krajnovich, D., J. Appl. Phys. 69 (4), 2072 (1991).CrossRefGoogle Scholar
10. Jette, A.N., Green, W.J., J. Appl. Phys., 68 (10), 5273 (1990).CrossRefGoogle Scholar
11. Eyett, M., Baeuerle, D., Wersing, W., Thomann, H., J. Appl. Phys., 52 (4), 1511 (1987).CrossRefGoogle Scholar
12. Ruzyllo, J., Solid State Technology, Mar., S1–S4, 1990.Google Scholar
13. Loewenstein, L.M. and Tipton, C.M., J. Electrochem. Soc., 138, 5, 13891394, 1991.CrossRefGoogle Scholar
14. Nobinger, G.L., Moskowitz, D.J., and Krusell, W.C., Microcontamination, April, 21–26 & 68–69, 1992.Google Scholar
15. Ruzyllo, J., Hoff, A.M., Frystak, D.C., and Hossain, S.D., J. Electrochem. Soc., 136, 14751476, 1989.CrossRefGoogle Scholar
16. Gluck, R.M., Patent, U.S. # 4,159,917, July, 1979.Google Scholar
17. Ruzyllo, J., Duranko, G.T., and Hoff, A.M., J. Electrochem. Soc., 134, 20522055, 1987.CrossRefGoogle Scholar
18. Rousseau, F., Farkas, J., Kodas, T.T., and Hampden-Smith, M., In Preparation, 1991.Google Scholar
19. Xue, G., Dong, J., Sheng, Q., J. Chem. Soc. Dalton Trans., 407 (1991).CrossRefGoogle Scholar
20. Sekine, R., Kawai, M., Hikita, T., and Hanada, T., Surface Science, 242, 508 (1991).CrossRefGoogle Scholar
21. Jain, A., Chi, K.M., Kodas, T.T., M.J. Hampden-Smith, Farr, J.D., and Paffett, M.F., Chem. Mater., 3, 995 (1991).CrossRefGoogle Scholar
22. Doyle, G., Eriksen, K.A., D. Van Engen, Organometallics, 4, 830, (1985).sCrossRefGoogle Scholar