Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-06T07:07:30.512Z Has data issue: false hasContentIssue false

Neutron-Zwischenreflex-Scattering from Point Defects in Crystals

Published online by Cambridge University Press:  25 February 2011

H. Dosch
Affiliation:
Sektion Physik der Ludwig-Maximilians-Universitat Munchen, D 8000 Munchen 22, Federal Republic of Germany
J. Peisl
Affiliation:
Sektion Physik der Ludwig-Maximilians-Universitat Munchen, D 8000 Munchen 22, Federal Republic of Germany
Get access

Abstract

Diffuse neutron or x-ray scattering close to the Bragg peaks (Huang scattering) and far away from Bragg peaks (Zwischenreflex-scattering) supplies detailed information on point defects and small agglomerates in crystals [1]. The defect structure, i.e. the lattice location, the displacements of the near neighbours and the strength and symmetry of the long ranged displacement field can be determined. In order to demonstrate the power of this technique, we report on recent experimental results. Interstitially dissolved N and O in Nb are located on octahedral sites and create rather large displacements in their vicinity. Their long ranged displacement field shows the symmetry of the defect site. The light interstitials H and D in Nb are located on tetrahedral sites and their long ranged displacement field shows the symmetry of the host lattice. A rather complicated defect model is necessary in order to explain the local defect structure.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For a review see e.g.: Peisl, H., J. de Physique 37,C747 (1976). P. Ehrhart, J. of Nucl. Mat. 69 & 70, 200 (1978).Google Scholar
2. Pelsl, J., Lattice Distortion, Elastic Interaction and Phase Transitions of Hydrogen in Metals, in Festkorperprobleme (Advances in Solid State Physics), p. 45, Grosse, P. (ed.) Vieweg, Braunschweig 1984.Google Scholar
3. Trinkaus, H., Phys. Stat. Sol.(b) 51, 307 (1972).CrossRefGoogle Scholar
4. Haubold, H.G., J. Appl. Cryst. 8, 175 (1974).CrossRefGoogle Scholar
5. Schubert, U., Metzger, H. and Peisl, J., J. Phys. F 14, 2457 (1984).H. Dosch, U. Schubert, H. Metzger and J. Peisl, J. Phys. F 14, 2467 (1984).CrossRefGoogle Scholar
6. Dosch, H. and Peisl, J., Phys. Rev. B 32, 623 (1985).CrossRefGoogle Scholar
7. Tewary, V.K., J. Phys. F 3, 1515 (1973).CrossRefGoogle Scholar
8. Rowe, J.R. and Magerl, A., Phys. Rev. B 21, 1706 (1980).CrossRefGoogle Scholar
9. von Schwerin, A., Diplomarbeit LMU Munchen 1985.Google Scholar
10. Moss, S.C., Keating, D.T. and Axe, J.D., Phase Transformations, (Pergamon Press, Oxford, 1973).Google Scholar
11. Dosch, H., Schwerin, A. v. and Peisl, J., Phys. Rev. B (to be published).Google Scholar
12. Burkel, E., Dosch, H. and Peisl, J., Z. Phys. B, Condensed Matter 53, 33 (1983).CrossRefGoogle Scholar
13. Metzger, H., Peisl, J. and Wanagel, J., J. Phys. F: Metal Phys. 6, 2195 (1976).CrossRefGoogle Scholar
14. Burkel, E., Doctoral Thesis, University of Munich 1982.Google Scholar
15. Carstanjen, H.D. and Sizmann, R., Physics Letters 40 A 93 (1972).CrossRefGoogle Scholar
16. Dosch, H., Doctoral Thesis, University of Munich 1984.Google Scholar
17. Dosch, H. and Peisl, J., Phys. Rev. Lett. 56, 1385 (1986).CrossRefGoogle Scholar
18. Flynn, C.P. and Stoneham, A.M., Phys. Rev. B 1, 3966 (1970).CrossRefGoogle Scholar
19. Lottner, V., Hans, J.W., Heim, A. and Kehr, K.W., J. Phys. Chem. Sol. 40, 557 (1978).CrossRefGoogle Scholar