Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T04:47:39.496Z Has data issue: false hasContentIssue false

Negative or Zero Thermal Expansion in Silicon Dicarbodiimide, Si(NCN)2

Published online by Cambridge University Press:  01 February 2011

Peter Kroll
Affiliation:
[email protected], University of Texas at Arlington, Chemistry and Biochemsitry, 700 Planetarium Pl, Arlingtom, TX, 76019, United States
Xuehua Yan
Affiliation:
[email protected], Jiangsu University, School of Materials Science and Engineering, Zhenjiang, 212013, China, People's Republic of
Ralf Riedel
Affiliation:
[email protected], TU Darmstadt, Institut fuer Materialwissenschaft, Darmstadt, 64287, Germany
Helmut Ehrenberg
Affiliation:
[email protected], IFW Dresden, Institute for Complex Materials, Dresden, 01171, Germany
Get access

Abstract

Using ab-initio molecular dynamics simulation we investigate the thermal expansion of β-Si(NCN)2 for temperatures up to 700 K. We find that the structure behaves isotropic, although its optimized ground state is tetragonal. Studying the zero-pressure volume as a function of temperature we find a negative expansion of the structure and a linear expansion coefficient αL of -2·10−5 K-1. We attribute this effect to a strong bending of the Si-N=C angle within the structure which increases on increasing the temperature. The stretching of Si-N and C=N bonds on the other side is regular.

Experiments motivated by the computational study were carried out on nano-crystalline Si(NCN)2 powders. The XRD Mo Kα data shows a negative thermal expansion for β-Si(NCN)2 up to 600 K. Synchrotron data indicates zero expansion of β-Si(NCN)2 between 460K and 800 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Riedel, R., Greiner, A., Miehe, G., Dressler, W., Fuess, H., Bill, J., Aldinger, F., Angew. Chem. Int. Ed. Engl. 1997, 36, 603.Google Scholar
[2] Kroll, P., Riedel, R., Hoffman, R., Phys. Rew. B 1999, 60, 3126.Google Scholar
[3] Kresse, G., Hafner, J., J. Phys. Rev. B 1993, 47, 558.10.1103/PhysRevB.47.558Google Scholar
[4] Kresse, G., Hafner, J., J. Phys. Rev. B 1994, 49, 14251.Google Scholar
[5] Kresse, G., Furthmüller, J., J. Comput. Mater. Sci. 1996, 6, 15.Google Scholar
[6] Kresse, G., Furthmüller, J., J. Phys. Rev. B 1996, 54, 11169.Google Scholar
[7] Li, Z. and Bradt, R. C., J. Mater. Sci. 1986, 21, 4366.Google Scholar
[8] Mary, T. A., Evans, J. S. O., Vogt, T., and Sleight, A. W., Science 1996, 272, 90.Google Scholar