Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:53:56.279Z Has data issue: false hasContentIssue false

Near-Surface Optical Detection of CH3 During Diamond Growth

Published online by Cambridge University Press:  25 February 2011

E. J. Corat
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
D. G. Goodwin
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

Resonance-enhanced multiphoton ionization (REMPI) has been used to detect the methyl radical CH3 within 0.5 mm of the substrate during CVD diamond growth. A strong dependence of the CH3 REMPI signal near the surface on substrate temperature is observed, which is not seen further from the surface. Below 1000 K, the observed temperature dependence may be characterized by an activation energy of approximately 4 ± 1 kcal/mole. The cause of the methyl depletion at low temperatures is not yet clear, but may be due to either gas-phase recombination near the surface or surface chemistry. The same qualitative behavior is observed for different substrate-filament distances and for gas compositions from 0.5% to 5% CH4 in H2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chu, C. J., D'Evelyn, M. P., Hauge, R. H., and Margrave, J. L., J. Mater. Res. 5, 2405 (1990).CrossRefGoogle Scholar
[2] Chu, C. J., D'Evelyn, M. P., Hauge, R. H., and Margrave, J. L., J. Appl. Phys. 70, 1695 (1991).CrossRefGoogle Scholar
[3] Harris, S. J. and Weiner, A. M., J. Appl. Phys. 70, 1385 (1991).CrossRefGoogle Scholar
[4] Harris, S. J. and Martin, L. R., J. Mater. Res. 5, 2313 (1990).CrossRefGoogle Scholar
[5] Martin, L. R. and Hill, M. W., J. Mater. Sci. Lett. 9, 621 (1990).CrossRefGoogle Scholar
[6] Tsuda, M., Nakajima, M., and Oikawa, S., J. Am. Chem. Soc. 108, 5780 (1986).CrossRefGoogle Scholar
[7] Harris, S. J., Appl. Phys. Lett. 56, 2298 (1990).CrossRefGoogle Scholar
[8] Harris, S. J. and Belton, D. N., Thin Solid Films (in press).Google Scholar
[9] Huang, D. and Frenklach, M., J. Phys. Chem. 96, 1868 (1992).CrossRefGoogle Scholar
[10] Kondoh, E., Ohta, T., Mitomo, T., and Ohtsuka, K., Appl. Phys. Lett. 59, 488 (1991).CrossRefGoogle Scholar
[11] Chu, C. J., Hauge, R. H., Margrave, J. L., and D'Evelyn, M. P., “Growth kinetics of (100), (110), and (111) homoepitaxial diamond films“, Submitted to Appl. Phys. Lett.Google Scholar
[12] Goodwin, D. G. and Gavillet, C. G., Proc. 2nd Intl. Conf. New Diamond Sci. Tech., edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Materials Research Society, Pittsburgh, PA, 1991), pp. 335340.Google Scholar
[13] Hsu, W. L., Appl. Phys. Lett. 59, 1427 (1991).CrossRefGoogle Scholar
[14] Celii, F. G. and Butler, J. E., J. Appl. Phys. 71, 2877 (1992).CrossRefGoogle Scholar
[15] Goodwin, D. G. and Gavillet, G. G., J. Appl. Phys. 68, 6393 (1990).CrossRefGoogle Scholar
[16] Smyth, K. C. and Tjossem, P. J. H., Appl. Opt. 29, 4891 (1990).CrossRefGoogle Scholar
[17] Hsu, W. L., J. Vac. Sci. Technol. A 6, 1803 (1988).CrossRefGoogle Scholar
[18] Vietzke, E., Flaskamp, K. et al. , J. Nucl. Mater. 145–147, 443 (1987).CrossRefGoogle Scholar
[19] Rye, R. R., Surf. Sci. 69, 653 (1977).CrossRefGoogle Scholar