Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T14:46:05.520Z Has data issue: false hasContentIssue false

Near-Field Second Harmonic Microscopy of Thin Ferroelectric Films

Published online by Cambridge University Press:  10 February 2011

I. I. Smolyaninov
Affiliation:
Electrical and Computer Engineering Department, University of Maryland, College Park, MD 20742, [email protected]
H. Y. Liang
Affiliation:
Electrical and Computer Engineering Department, University of Maryland, College Park, MD 20742, [email protected]
C. H. Lee
Affiliation:
Electrical and Computer Engineering Department, University of Maryland, College Park, MD 20742, [email protected]
C. C. Davis
Affiliation:
Electrical and Computer Engineering Department, University of Maryland, College Park, MD 20742, [email protected]
L. D. Rotter
Affiliation:
Ceramics Division, NIST, Gaithersburg, MD 20899–8522
D. L. Kaiser
Affiliation:
Ceramics Division, NIST, Gaithersburg, MD 20899–8522
Get access

Abstract

Near-field second harmonic microscopy is ideally suited for studies of local nonlinearity and poling of ferroelectric materials at the microscopic level. Its main advantages in comparison with other scanning probe techniques are the possibility of fast time-resolved measurements, and substantially smaller perturbation of the sample under investigation caused by the optical probe. We report second harmonic imaging of the surface of thin BaTiO3 films obtained in a near-field microscopy setup using a Ti:sapphire laser system consisting of an oscillator and a regenerative amplifier operating at 810 nm. Optical resolution on the order of 80 nm has been achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Auciello, O., Scott, J. F., and Ramesh, R., Physics Today, N7, 2227 (1998).Google Scholar
[2] Rotter, L. D., Kaiser, D. L., and Vaudin, M. D., Appl.Phys.Lett. 68, 310 (1996).Google Scholar
[3] Gruverman, A., Tokumoto, H., Prakash, A. S., Aggarwal, S., Yang, B., Wuttig, M., Ramesh, R., Auciello, O., and Venkatesan, T., Appl.Phys.Lett. 71, 3492 (1997).Google Scholar
[4] Smolyaninov, I. I., Zayats, A. V., and Davis, C. C., Phys.Rev.B 56, 9290 (1997).Google Scholar
[5] Jakubczyk, D., Shen, Y., Lal, M., Friend, C., Kim, K. S., Swiatkiewicz, J., and Prasad, P. N., Opt.Letters 24, 1151 (1999).Google Scholar
[6] Betzig, E. and Trautman, J. K., Science 257, 189 (1992).Google Scholar
[7] Zenhausern, F., O'Boyle, M. P., Wickramasinghe, H. K., Appl.Phys.Lett. 65, 1623 (1994).Google Scholar
[8] Sanchez, E. J., Novotny, L., and Xie, X. S., Phys.Rev.Lett. 82, 4014 (1999).Google Scholar
[9] Novotny, L., Pohl, D. W., and Hecht, B., Ultramicroscopy 61, 1 (1995).Google Scholar
[10] Tyunina, M., Wittborn, J., Rao, K. V., Levoska, J., Leppavuori, S., and Sternberg, A., Appl.Phys.Lett. 74, 3191 (1999).Google Scholar
[11] Gersten, J. I., Nitzan, A., J.Chem.Phys. 73, 3023 (1980).Google Scholar
[12] Kawata, Y., Xu, C., and Denk, W., J.Applied Phys. 85, 1294 (1999).Google Scholar
[13] Smolyaninov, I. I., Lee, C. H., and Davis, C. C., Appl.Phys.Lett. 74, 1942 (1999).Google Scholar
[14] Kaiser, D. L., Vaudin, M. D., Rotter, L. D., Bonevich, J. E., Levin, I., Armstrong, J. T., Roytburd, A. L., and Schlom, D. G. “Effect of film composition on the orientation of (Ba,Sr)TiO3 grains in (Ba,Sr)yTiO2+y thin films,” to appear in J. Mater. Res. 14 (12) (Dec. 1999).Google Scholar