Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T07:24:23.416Z Has data issue: false hasContentIssue false

Near-Field Scanning Optical Microscopy of Phase Separation Effects in Dilute Nitride Alloys.

Published online by Cambridge University Press:  01 February 2011

Alexander Mintairov
Affiliation:
Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
Thomas Kosel
Affiliation:
Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
Kai Sun
Affiliation:
Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
Victor Ustinov
Affiliation:
Ioffe Physico-Technical Institute, RAS, St. Petersburg 194021, Russia
James Merz
Affiliation:
Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
Get access

Abstract

The effect of nitrogen composition on structural parameters of intrinsic quantum dots (QDs) has been studied in GaAs1-yNy and InxGa1-xAs1-yNy alloys (y∼0. 015–0.03) using low-temperature near-field scanning optical microscopy (NSOM) combined with magneto-photoluminescence spectroscopy. We used measurements of the diamagnetic shift (magnetic field strength 0–10T), temperature dependent spectra (temperature range 5–300K) and near-field monochromatic images for the estimation of the size, nitrogen excess and density of QDs. The obtained values (size ∼10–30 nm, nitrogen excess ∼0.005 and density ∼100 /μm-3) suggest spontaneous formation (phase separation) of QDs. Strong lateral inhomogeniety of the QD distribution on a micron length scale was observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sakai, S., et al., Jpn. J. Appl. Phys. 32 (1993) 4413;Google Scholar
2 Wei, S.-H., Zunger, A., Phys. Rev. Lett. 76 (1996) 664.Google Scholar
3 Mintairov, A.M., et al., Phys. Rev. Lett. 87 277401 (2001).Google Scholar
4 Skierbiszewski, C. et al. Appl. Phys. Lett. 76 2409 (2000); Physica E, 13 1078 (2002).Google Scholar
5 Mintairov, A. M., et al, Physica E, 21, 385389 (2004).Google Scholar
6 Eah, S.K., Jhe, W, Arakawa, Y., Appl. Phys. Lett. 80, 2779 (2002)Google Scholar
7 Kent, P. R. C. and Zunger, Alex, Phys. Rev. B, 64 115208 (2001).Google Scholar
8 Lui, X., Pistol, M.-E., Samuelson, L., Schwetlick, S., Seifert, W., Appl. Phys. Lett. 56 1451 (1990);Google Scholar
Makimoto, T., Saito, H., Nishida, T. and Kobayashi, N., Appl. Phys. Lett. 70 2984 (1997).Google Scholar
9 Varshni, Y. P., Physica 34, 149 (1967).Google Scholar
10 Tran Thoai, D. B., Hu, Y. Z. and Koch, S. W. Phys. Rev. B 42, 11261, (1990).Google Scholar
11 McCay, H. A., Feenstra, R. M., Schmidtling, T., Pohl, U. V., and Geiz, J. F., J. Vac. Sci. Technol. 19 1644 (2001).Google Scholar