Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T09:27:46.888Z Has data issue: false hasContentIssue false

Near Field Scanning Optical Microscopy and Spectroscopy of Electronic Materials and Structures

Published online by Cambridge University Press:  15 February 2011

W. M. Duncan*
Affiliation:
Corporate Research and Development, Texas Instruments Incorporated, P.O. Box 655936, MS 147, Dallas, TX 75265, [email protected]
Get access

Abstract

A Near Field Scanning Optical Microscope (NSOM) with spectroscopic capability is applied to imaging semiconductor and microelectronic structures. NSOM combined with spectroscopic analysis provides physical and chemical information of thin films and defects with ultra high spatial resolution. We have studied epitaxial and bulk samples and partially fabricated SiO2/Si CMOS structures to investigate the spatial resolution and imaging modes of NSOM. Reflected intensity contrast in NSOM yields images of defect networks in InGaAs/InAlAs/GaAs epitaxial layers and shows thickness variations in SiO2 films on Si. Surface topological changes observed in NSOM demonstrate a spatial resolution of significantly better than 0.25 μm. Fluorescence imaging is examined for chemically identifying materials and defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Betzig, E. and Trautman, J.K., Science 257, 189 (1992).Google Scholar
2. Pohl, D.W., in Advances in Optical and Electron Microscopy, Mulvey, T. and Sheppard, C.J.R., eds., (Academic, New York, 1991), V12, p.243.Google Scholar
3. Valaskovic, G.A., Holton, M., and Morrison, G.H., Appl. Opt. 34, 1215 (1995).Google Scholar
4. Betzig, E., Chichester, R.J., Lanni, F., and Taylor, D.L., Bioimaging 1, 129 (1993).Google Scholar
5. Betzig, E., and Chichester, R.J., Science 262, 1422 (1994).Google Scholar
6. Ambrose, W.P., Goodwin, P.M., Martin, J.C., and Keller, R.A., Phys. Rev. Left. 72, 160 (1994).Google Scholar
7. Birnbaum, D., Kook, S.-K., and Kopelman, R., J. Phys. Chem. 97, 3091 (1993).Google Scholar
8. Grober, R.D., Harris, T.D., Trautman, J.K., Betzig, E., Wegscheider, W., Pfeiffer, L., and West, K., Appl. Phys. Lett. 64, 1421 (1994).Google Scholar
9. Unlu, M.S., Goldberg, B.B., Herzog, W.D., Sun, D. and Towe, E., Appl. Phys. Lett. 67, 1862 (1995).Google Scholar
10. Buratto, S.K., Hsu, J.W.P., Trautman, J.K., Betzig, E., Bylsma, R.B., Bahr, C.C., and Cardillo, M.J., J. Appl. Phys. 76, 7720 (1994).Google Scholar
11. Hsu, J.W.P., Fitzgerald, E.A., Xie, Y.H., and Silverman, P.J., Appl. Phys. Lett 65, 344 (1994).Google Scholar
12. Betzig, E., Trautman, J.K., Wolfe, R., Gyorgy, E.M., and Finn, P.L., Appl. Phys. Lett. 61, 142 (1992).Google Scholar
13. Shchemelinin, A., Rudman, M., Lieberman, K., and Lewis, A., Rev. Sci. Instrum. 64, 3538 (1993).Google Scholar
14. Duncan, W.M., “Near Field Scanning Optical Microscopy for Microelectronic Materials and Devices,” to be published, J. Vac. Sci. Tech.Google Scholar
15. Duncan, W.M., Eastwood, M.L, and Tsai, H.-L., Mat. Res. Soc. Symp. Proc. 69, 225 (1986).Google Scholar
16. Perkowitz, S., Seiler, D.G., and Duncan, W.M., J. Res. Natl. Inst. Stand Technol. 99, 605 (1994).Google Scholar
17. Jahncke, C.L., Paesler, M.A., and Hallen, H. D., Appl. Phys. Lett. 67, 2483 (1995).Google Scholar