Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T01:00:07.675Z Has data issue: false hasContentIssue false

Nature of Non-magnetic Strongly-Correlated State in Plutonium

Published online by Cambridge University Press:  26 February 2011

Leniod Purovskii
Affiliation:
[email protected], Centre de Physique Theorique, Ecole Polytechnique, Paris 91128, France
Alexander Shick
Affiliation:
[email protected], Institute of Physics ASCR, Department of Condensed Matter Theory, Na Slovance 2, Prague, 182 21, Czech Republic
Ladislav Havela
Affiliation:
[email protected], Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, Prague, N/A, Czech Republic
Mikhail Katsnelson
Affiliation:
[email protected], Radbound University, Institute for Molecules and Materials, Nijmegen,, 6525, Netherlands
Alexander Lichtenstein
Affiliation:
[email protected], University of Hamburg, Department of Physics, Jungiusstrasse 9, Hamburg, 20355, Germany
Get access

Abstract

Local density approximation for the electronic structure calculations has been highly successful for non-correlated systems. The LDA scheme quite often failed for strongly correlated materials containing transition metals and rare-earth elements with complicated charge, spin and orbital ordering. Dynamical mean field theory in combination with the first-principle scheme (LDA+DMFT) can be a starting point to go beyond static density functional approximation and include effects of charge, spin and orbital fluctuations. Ab-initio relativistic dynamical mean-field theory is applied to resolve the long-standing controversy between theory and experiment in the “simple” face-centered cubic phase of plutonium called δ-Pu. In agreement with experiment, neither static nor dynamical magnetic moments are predicted. In addition, the quasiparticle density of states reproduces not only the peak close to the Fermi level, which explains the large coefficient of electronic specific heat, but also main 5f features observed in photoelectron spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Freeman, A. J., and Lander, G. H., Handbook on the Physics and Chemistry of the Actinides (North-Holland, Amsterdam, 1984).Google Scholar
2. Hecker, S. S., Harbur, D. R. and Zocco, T. G., Prog. Materials Sci. 49, 429 (2004).Google Scholar
3. Johansson, B., Phys. Rev. B 11, 2740 (1975).Google Scholar
4. Katsnelson, M. I., Solovyev, I. V., and Trefilov, A. V., 56, 272276 (1992).Google Scholar
5. Savrasov, S. Y., Kotliar, G., and Abrahams, E., Nature 410, 793 (2001).Google Scholar
6. Dai, X., et al. Science 300, 953 (2003).Google Scholar
7. Lashley, J. C., Lawson, A. R., McQueenney, J., andLander, G. H., Phys. Rev. B 72, 054416 (2005).Google Scholar
8. Solovyev, I. V., Liechtenstein, A. I., Gubanov, V. A., Antropov, V. P., andAndersen, O. K., Phys. Rev. B 43, 14414 (1991).Google Scholar
9. Savrasov, S. Y., and Kotliar, G., Rev. Lett. 84, 26703673 (2000).Google Scholar
10. Piskunov, Yu., et. al. Phys. Rev. B 71, 174410 (2005).Google Scholar
11. Heffner, R. H., Morris, G. D., Fluss, M. J., et al. Phys. Rev. B 73, 094453 (2006).Google Scholar
12. Arko, A. J., Joyce, J. J., Morales, L., Wills, J., Lashley, J., Wastin, F., and Rebizant, J., Phys. Rev. B 62, 1773 (2000).Google Scholar
13. Terry, J., et al., Surface Science 499, L141 (2002).Google Scholar
14. Havela, L., Gouder, T., Wastin, F., and Rebizant, J., Phys. Rev. B 65, 235118 (2002).Google Scholar
15. Eriksson, O., Becker, J. D., Balatsky, A. V., and Wills, J. M. J. Alloys and Compounds 287, 1 (1999).Google Scholar
16. Söderlind, P., Landa, A., Sadigh, B., Vitos, L., and Ruban, A., Phys. Rev. B 70, 144103 (2004).Google Scholar
17. Anisimov, V. I., Aryasetiawan, F., and Lichtenstein, A. I., Condens. Matter 9, 767 (1997).Google Scholar
18. Shick, A. B., Drchal, V., and Havela, L., Europhys. Lett. 69, 588 (2005).Google Scholar
19. Mayer, M. Goeppert, Phys. Rev. 60, 184 (1941).Google Scholar
20., Kamyshenko, V. V., Katsnelson, M. I., Lichtenstein, A. I., and Trefilov, A. V., Sov. Phys. Solid State 29, 2051 (1987).Google Scholar
21. Johansson, B., Philos. Mag. 30, 469 (1974).Google Scholar
22. Georges, A:, Kotliar, G., Krauth, W., and Rozenberg, M. J., Rev. Mod. Phys. 68, 13 (1996).Google Scholar
23. Pourovskii, L. V., Katsnelson, M. I., and Liechtenstein, A. I, B 72, 115106 (2005).Google Scholar
24. Katsnelson, M. I., and Trefilov, A. V., Physica B 163, 182 (1990).Google Scholar
25. Yamashita, Y., and Ueda, K., Phys. Rev. B 67, 195107 (2003).Google Scholar
26. Tobin, J. G., et al., Phys. Rev. B 68, 155109 (2003).Google Scholar
27. Havela, L., Wastin, F., Gouder, Rebizant T., Phys. Rev. B 68, 085101 (2003).Google Scholar
28. Gouder, T., Eloirdi, R., Rebizant, J., Boulet, P., and Huber, F., Phys. Rev. B 71, 165101 (2005).Google Scholar
29. Gouder, T., Havela, L., and Rebizant, J., Physica B 359–361, 1090 (2005).Google Scholar
30. Pourovskii, L. V., Katsnelson, M. I., Lichtenstein, A. I., Havela, L., Gouder, T., Wastin, F., Shick, A. B., Drchal, V., and Lander, G. H., Europhys. Lett. 74, 479 (2006).Google Scholar
31. Shick, A. B., Kolorenc, J., Havela, L., Drchal, V., and Gouder, T., to be bulished in Europhys. Lett., arXiv:cond-mat/0610794 (2006).Google Scholar