Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T16:36:46.936Z Has data issue: false hasContentIssue false

Nano-Structured Silicon-Based Films with Visible Light Emission Synthesized by Laser Ablation

Published online by Cambridge University Press:  15 February 2011

T. Makimura
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305, Japan, [email protected]
Y. Kunu
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305, Japan, [email protected]
N. Ono
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305, Japan, [email protected]
K. Murakami
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305, Japan, [email protected]
Get access

Abstract

Applying laser ablation technique, we have synthesized two types of SiO2 films that include nanometer-sized Si particles. One is synthesized by alternative deposition of Si nanoparticles layers and SiO2 layers. The synthesized film exhibits red photoluminescence (PL) with a peak energy below 1.5 eV. The other is synthesized by annealing at 1000°C of SiOx films, which are formed by laser ablation in diluted O2 gas. We find that there is a narrow range of composition for efficient red PL. Based on the experimental results, we tentatively discuss a possible model for the origin of the red PL.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
[2]Werwa, E., Seraphin, A.A., Chiu, L.A., Zhou, C. and Kolenbrander, K.D., Appl. Phys. Lett. 64, 1821 (1994).Google Scholar
[3]Yamada, T., Orii, T., Umezu, I., Takeyama, S. and Yoshida, T., Jpn. J. Appl. Phys. 35, 1361 (1996).Google Scholar
[4]Shimizu-Iwayama, T., Terao, Y., Kamiya, A.Takeda, M., Nakao, S. and Saitoh, K., Nanostruc-tured Materials 5, 307 (1995).Google Scholar
[5]Makimura, T., Kunii, Y., Ono, N. and Murakami, K., Jpn. J. Appl. Phys. to be published.Google Scholar
[6]Makimura, T., Kunii, Y. and Murakami, K., Jpn. J. Appl. Phys. 35, 4780 (1996).Google Scholar
[7]Kanemitsu, Y.: Optical Properties of Low-Dimensional Materials, eds. Ogawa, T. and Kanemitsu, Y. (World Scientific, Singapore, 1995) Chap. 5, p. 258.Google Scholar
[8]Kanemitsu, Y., Ogawa, T., Shiraishi, K. and Takeda, K., Phys. Rev. B48, 4883 (1993).Google Scholar
[9]Makimura, T. and Murakami, K., Appl. Surf. Sci. 96–98, 242 (1996).Google Scholar
[10]Makimura, T., Sakuramoto, T. and Murakami, K., Jpn. J. Appl. Phys. 35, L735 (1996).Google Scholar
[11]Geohegan, D.B., Laser Ablation of Electronic Materials-Basic Mechanism and Applications- eds. Fogarassy, E. and Lazare, S. (Elsevier, North Holland, 1992) p. 73.Google Scholar
[12]Tanimura, K., Itoh, C. and Itoh, N.: J. Phys. C 21, 1869 (1988).Google Scholar
[13]Griscom, D.L.: The Centennial Memorial Issue of The Ceramic Society of Japan 99, 923 (1991).Google Scholar
[14]Song, K.S. and Williams, R.T.: The Self-Trapped Excitons (Springer-Verlag, Berlin, 1993).Google Scholar