Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T07:35:12.128Z Has data issue: false hasContentIssue false

Nanostructural Lithography via Photo-Initiated Phase Transformation of Silica-Surfactant Assemblies

Published online by Cambridge University Press:  10 February 2011

D. A. Doshi
Affiliation:
University of New Mexico/NSF Center for Micro-Engineered Materials, Albuquerque, NM
N. HÜsing
Affiliation:
Vienna University of Technology, Austria
H. Fan
Affiliation:
University of New Mexico/NSF Center for Micro-Engineered Materials, Albuquerque, NM
A. J. Hurd
Affiliation:
Sandia National Laboratories, Albuquerque, NM
C. J. Brinker
Affiliation:
University of New Mexico/NSF Center for Micro-Engineered Materials, Albuquerque, NM Sandia National Laboratories, Albuquerque, NM
Get access

Abstract

Cooperative self-assembly processes of inorganic species and amphiphilic molecules have experienced major advances over the past six years. The ability to design these materials with spatially controlled combinations of different mesophases or compositions, and therefore different properties, would greatly enhance their utility as nanofunctional surfaces.

We present a simple lithographic procedure, which allows a deliberate control of structure and properties of a meso-ordered silica film through optical mediation. This nanostructural lithography process exploits the pH sensitivity of supra-molecular self-assembly which allows spatial control over mesophases in the thin film and a selective etching capability. Through the addition of a photoacid generator in the coating sol along with surfactant and silica source, dip coating results in continuous, ordered photosensitive films. Exposure to UV light through a mask produces local pH changes, inducing mesostructural phase transitions and an increase in the acidcatalyzed siloxane condensation rate in the exposed regions. Two surfactant systems, CTAB (CH3(CH2)15N+(CH3)3Br) and Brij 56 (CH3(CH2)15(OCH2CH2)10OH) have been studied. X-ray diffraction, transmission and scanning electron microscopy, optical microscopy, ellipsometry, MAS-NMR and atomic force microscopy are used to characterize the patterned nanostructured surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ying, Jackie Y., Mehnert, C. P., Angew, M. S. Wong. Chem. Int. Ed. 1999, 38, 5677.; C. J. Brinker Curr. Opin. Solid State Mater. Sci., 1, 798–805,1996; J. C. Vartuli, C. T. Kresge, W. J. Roth, S. B. McCullen, J. S. Beck, K. D. Schmitt, M. E. Leonowitz, J. D. Lutner, E. W. Sheppard in Advanced Catalysts and Nanostructured Materials: Modem Synthesis Methods (Ed: W.R. Moser) Academic Press, New York, 1–19(1996); G. D. Stucky, Q. Huo, A. Firouzi, B. F. Chmelka, S. Schacht, I. G. Voigt Martin, F. Sch¼th in Progress in Zeolite and Microporous Materials, Studies in Surface Science and Catalysis, 105, (Eds: H. Chon, S. K. Ihm, Y. S. Uh), Elsevier, Amsterdam, 3–28, (1997); N. K. Raman, M. T. Anderson, C. J. Brinker Chem. Mater., 8, 1682–1701. 1996; D. M. Antonelli, J. Y. Ying, Curr. Opin. Coll. Interf. Sci., 1, 523–529, 1996.; D. Zhao, P. Yang, Q. Huo, B. F. Chmelka and G. D. Stucky, Current Opinion in Solid State –121, 1998; Y. Lu, H. Fan, A. Stump, T. L. Ward, T. Rieker, C. J. Brinker, Nature, 398, 223–226, 1999 10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E3.0.CO;2-E>Google Scholar
2 Kumar, A., Abott, N. L., Kim, E., Biebuyck, H. A., Whitesides, G. M., Acc. Chem. Res., 28, 219226, 1995 10.1021/ar00053a003Google Scholar
3 Popall, M., Schulz, J. and Schmidt, H., US Patent No. 5 360 834 (1 November 1994).Google Scholar
4 Rosen, M. J., Surfactants and Interfacial Phenomena, Wiley-Interscience, New York, (1989)Google Scholar
5 Lu, Y., Ganguli, R., Drewien, C. A., Anderson, M.T., Brinker, C.J., Gong, W., Guo, Y., Soyez, H., Dunn, B., Huang, M. H., J.1. Zink, Nature, 389, 364368, 1997 10.1038/38699Google Scholar
6 Doshi, D. A., Hüsing, N. unpublished resultsGoogle Scholar
7 Crivello, J. V., Lam, J. H. W., J. Polym. Sci., Polym. Symp. 1976, 56, 383.; J. V. Crivello, J. H. W. Lam, Macromolecules 1977, 10, 1307.; J. L. Dektar, N. P. Hacker, J. Org. Chem. 1990, 55, 39.Google Scholar
8 Israelachvili, J., Intermolecular and surface forces, Academic Press, San Diego, (1992)Google Scholar
9 Brinker, C. J., Sehgal, R., Raman, R., Schunk, P., Headley, T., J. Sol-Gel Sci. & Tech. 476, 1994 Google Scholar
10 Auvray, X., Petipas, C., Anthore, R., Rico, I. and Lattes, A., J. Phys. Chem., 93, 74587464, (1989)10.1021/j100358a040Google Scholar