Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:29:04.491Z Has data issue: false hasContentIssue false

Nanosilica Formation at Lipid Membranes Induced by Silaffin Peptides

Published online by Cambridge University Press:  31 January 2011

Michael Kent
Affiliation:
[email protected], Sandia National Labs, P.O. Box 5800, Albuquerque, New Mexico, 87185, United States
Jaclyn K. Murton
Affiliation:
[email protected], Sandia National Labs, Albuquerque, New Mexico, United States
Sushil Satija
Affiliation:
[email protected], NIST, Gaithersburg, Maryland, United States
Ivan Kuzmenko
Affiliation:
[email protected], Argonne National Lab, Argonne, Illinois, United States
Blake Simmons
Affiliation:
[email protected], Sandia National Labs, Livermore, California, United States
Get access

Abstract

Diatoms are unicellular eukaryotic algae found in fresh and marine water. Each cell is surrounded by an outer shell called a frustule that is composed of highly structured amorphous silica. Diatoms are able to transform silicic acid into these sturdy intricate structures at ambient temperatures and pressures, whereas the chemical synthesis of silica-based materials typically requires extremes of temperature and pH. Cationic polypeptides, termed silica affinity proteins (or silaffins) recently identified from dissolved frustules of specific species of diatoms are clearly involved and have been shown to initiate the formation of silica in solution. The relationship between the local environment of catalytic sites on these peptides, which can be influenced by the amino acid sequence and the extent of aggregation, and the observed structure of the silica is not understood. Moreover, the activity of these peptides in promoting silicification at lipid membranes has not yet been clarified. In this work we developed a model system to address some of these questions. We studied peptide adsorption to Langmuir monolayers and subsequent silicification using X-ray reflectivity and grazing incidence X-ray diffraction. The results demonstrate the lipid affinity of the parent sequences of several silaffin peptides. Further, the results show that the membrane-bound peptides promote the formation of interfacial nanoscale layers of amorphous silica at the lipid-water interface that vary in structure according to the peptide sequence.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Johnston, A. M., Raven, J. A., Beardall, J., Leegood, R. C. Nature 2001, 412, 4041.10.1038/35083694Google Scholar
2 Granum, E., Raven, J. A., Leegood, R. C. Canadian Journal of Botany 2005, 83, (7), 898908.10.1139/b05-077Google Scholar
3 Hazelaar, S., van der Strate, H. J., Gieskes, W. W. C., Vrieling, E. G. J. Phycol. 2005, 41, 354358.10.1111/j.1529-8817.2005.04131.xGoogle Scholar
4 Noll, F., Sumper, M. Hampp, N. .Nano Letters 2002, 2, 9195.10.1021/nl015581kGoogle Scholar
5 Crawford, S. A., Higgins, M. J., Mulvaney, P., Wetherbee, R. J. .J. Phycol. 2001, 37, 543554.10.1046/j.1529-8817.2001.037004543.xGoogle Scholar
6 Mann, S., Ozin, G.A.,.Nature 1996, 382, 313318.10.1038/382313a0Google Scholar
7 Pickett-Heaps, J., Schmid, A. M. M., Edgasr, L. A., Biopress: Bristol, UK, 1990; Vol. 7, p 1169.Google Scholar
8 Poulsen, N.; Kroger, N. J Biol Chem 2004, 279, (41), 42993–9.10.1074/jbc.M407734200Google Scholar
9 Kroger, N.; Deutzmann, R.; Bergsdorf, C.; Sumper, M. Proc Natl Acad Sci U S A 2000, 97, (26), 14133–8.10.1073/pnas.260496497Google Scholar
10 Kroger, N.; Deutzmann, R.; Sumper, M. Science 1999, 286, (5442), 1129–32.Google Scholar
11 Kroger, N.; Deutzmann, R.; Sumper, M. J Biol Chem 2001, 276, (28), 26066–70.10.1074/jbc.M102093200Google Scholar
12 Kroger, N.; Lorenz, S.; Brunner, E.; Sumper, M. Science 2002, 298, (5593), 584–6.10.1126/science.1076221Google Scholar
13 Knecht, M. R.; Wright, D. W. Chem Commun (Camb) 2003, (24), 30383039.10.1039/b309074dGoogle Scholar
14 Kent, M. S.; Murton, J. K.; Zendejas, F. J.; Tran, H.; Simmons, B. A.; Satija, S.; Kuzmenko, I. Langmuir 2009, 25, 305310.10.1021/la801794eGoogle Scholar
15 Als-Nielsen, J.; Jacquemain, D.; Kjaer, K.; Leveiller, F.; Lahav, M.; Leiserowitz, L. Phys. Rep. 1994, 246, (5), 251313.10.1016/0370-1573(94)90046-9Google Scholar
16 Russell, T. Mater. Sci. Rep 1990, 5, 171271.10.1016/S0920-2307(05)80002-7Google Scholar
17 Neville, F.; Cahuzac, M.; Konovalov, O.; Ishitsuka, Y.; Lee, K. Y.; Kuzmenko, I.; Kale, G. M.; Gidalevitz, D. Biophys J 2006, 90, (4), 12751287.10.1529/biophysj.105.067595Google Scholar