Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:45:40.894Z Has data issue: false hasContentIssue false

Nanoscale Y2O3 Phase Dispersion in YBa2Cu3O7−x Thin Films Produced by Plasma-Enhanced Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  28 February 2011

P. Lu
Affiliation:
Dept. of Mechanics & Materials Sci., Rutgers, Piscataway, NJ 08855–0909.
J. Zhao
Affiliation:
EMCORE Corporation, 35 Elizabeth Ave., Somerset, NJ 08873.
C. S. Chern
Affiliation:
Dept. of Mechanics & Materials Sci., Rutgers, Piscataway, NJ 08855–0909.
Y. Q. Li
Affiliation:
Stevens Institute of Technology, Hoboken, NJ 07030.
G. A. Kulesha
Affiliation:
Stevens Institute of Technology, Hoboken, NJ 07030.
B. Gallois
Affiliation:
Stevens Institute of Technology, Hoboken, NJ 07030.
P. Norris
Affiliation:
EMCORE Corporation, 35 Elizabeth Ave., Somerset, NJ 08873.
B. Kear
Affiliation:
Dept. of Mechanics & Materials Sci., Rutgers, Piscataway, NJ 08855–0909.
F. Cosandey
Affiliation:
Dept. of Mechanics & Materials Sci., Rutgers, Piscataway, NJ 08855–0909.
Get access

Abstract

Transmission electron microscopy has been used to investigate the microstructure of YBa2Cu3O7−x thin films deposited by Plasma-Enhanced Metalorganic Chemical Vapor Deposition. The films with the best superconducting properties of Tc ∼90K and Jc>106A/cm2 at 77K and OT were either Y-rich or both Y- and Cu-rich relative to the ideal 1:2:3 composition. In the Y-rich thin films, nanoscale yttria(Y2O3) precipitates have been identified. The precipitates with an average size of about 50Å and densities as high as 1024/m3 are uniformly distributed and highly oriented with respect to the matrix. Excess Cu in the Cu- and Y-rich films leads to formation of large CuO particles on the film surface but does not have any effect on formation of nanoscale Y2O3 phase within the films. The Y2O3 precipitates may act as flux pinning sites for high critical current densities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsuno, S., Uchikawa, F., and Yoshizaki, K., Jpn. J. Appl. Phys. 29, L947 (1990).CrossRefGoogle Scholar
2. Li, Y.Q., Zhao, J., Chern, C.S., Huang, W., Kulesha, G.A., Lu, P., Gallois, B., Norris, P., Kear, B., and Cosandey, F., Appl. Phys. Lett. 58, 648 (1991).CrossRefGoogle Scholar
3. Zhao, J., Li, Y.Q., Chern, C.S., Huang, W., Lu, P., Gallois, B., Kear, B., Cosandey, F., Wu, X.D., Muenchausen, R.E., and Garrison, S., Appl. Phys. Lett. 59, 1254 (1991).Google Scholar
4. Zhao, J., Chern, C.S., Li, Y.Q., Norris, P., Gallois, B., Kear, B., Wu, X.D., and Muenchausen, R.E., Appl. Phys. Lett. 58, 2839 (1991).Google Scholar
5. Li, Y.Q., Zhao, J., Chern, C.S., Lu, P., Kulesha, G.A., Gallois, B., Norris, P., Kear, B., and Cosandey, F., unpublished.Google Scholar
6. Lu, P.., Li, Y.Q., Zhao, J., Chern, C.S., Gallois, B., Norris, P., Kear, B., and Cosandey, F., Submitted to Appl. Phys. Lett.Google Scholar
7. Lu, P.., Li, Y.Q., Zhao, J., Chern, C.S., Kulesha, G.A., Gallois, B., Norris, P., Kear, B., and Cosandey, F., Submitted to J. Mater. Res.Google Scholar
8. Marshall, A.F., Char, K., Barton, R.W., and Kapitulnik, , J.Mater. Res. 5, 2049 (1990).Google Scholar
9. Ramesh, R., Hwang, D.M., Barner, J.B., Nazar, L., Ravi, T.S., Inam, A., Dutta, B., Wu, X.D., and Venkatesan, T., J. Mater. Res. 5, 704 (1990).Google Scholar
10. Eibl, O. and Roas, B., J. Mater. Res. 5, 2620 (1990).Google Scholar
11. Roth, R.S. and Schneider, S.J., J. Res. NBS 64A, 309 (1960).Google Scholar
12. Hylton, T.H. and Beasley, M.R., Phys. Rev. B41, 11669, (1990).Google Scholar