Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T10:57:47.554Z Has data issue: false hasContentIssue false

Nano-scale vacuum spaced thermo-tunnel devices for energy harvesting applications

Published online by Cambridge University Press:  07 December 2012

Amit K. Tiwari
Affiliation:
Electrical and Electronic Engineering, Newcastle University, NE1 7RU, UK
Jonathan P. Goss
Affiliation:
Electrical and Electronic Engineering, Newcastle University, NE1 7RU, UK
Nick G. Wright
Affiliation:
Electrical and Electronic Engineering, Newcastle University, NE1 7RU, UK
Alton B. Horsfall
Affiliation:
Electrical and Electronic Engineering, Newcastle University, NE1 7RU, UK
Get access

Abstract

The output power-density and the efficiency of thermo-tunnel devices are examinedas a function of inter-electrode separation, electrode work-function, and temperature. We find that these physical parameters dramatically influence the device characteristics, and under optimal conditions a thermo-tunnel device is capable of delivering a very high output power-density of ∼ 103Wcm−2. In addition, at higher temperatures, the heat-conversion efficiency of the thermo-tunnel device approaches ∼ 10%, comparable to that of a thermoelectric generator. We therefore propose that thermo-tunnel devices are promising for solid-state thermal energy conversion.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Angelo, J. A. and Buden, D., Space Nuclear Power (Orbit Book Company, Malabar, Florida, 1985).Google Scholar
Hishinuma, Y., Geballe, T. H., Moyzhes, B. Y., and Kenny, T. W., Appl. Phys. Lett. 78, 2572 (2001).CrossRefGoogle Scholar
Mahan, G. D., J. Appl. Phys. 76, 4362 (1994).CrossRefGoogle Scholar
Westover, T. L. and Fisher, T. S., Phys. Rev. B 77, 115426 (2008).CrossRefGoogle Scholar
Despesse, G. and Jager, T., J. Appl. Phys. 96, 5026 (2004).CrossRefGoogle Scholar
Mahan, G. D. and Woods, L. M., Phys. Rev. Lett. 80, 4016 (1998).CrossRefGoogle Scholar
Korotkov, A. N. and Likharev, K. K., Appl. Phys. Lett. 75, 2491 (1999).CrossRefGoogle Scholar
Enikov, E. T. and Makansi, T., Nanotechnology 19, 075703 (2008).CrossRefGoogle Scholar
Hishinuma, Y., Geballe, T. H., Moyzhes, B. Y., and Kenny, T. W., J. Appl. Phys. 94, 4690 (2003).CrossRefGoogle Scholar
Teague, E.C., J. Res. Nat. Bur. Stand. 91, 171 (1986).CrossRefGoogle Scholar
Tiwari, A. K., Goss, J. P., Briddon, P. R., Wright, N. G., Horsfall, A. B., and Rayson, M. J., Phys. Rev. B 86, 155301 (2012).CrossRefGoogle Scholar
Tiwari, A. K., Goss, J. P., Briddon, P. R., Wright, N. G., Horsfall, A. B., Jones, R., and Rayson, M. J., unpublished, 2012.Google Scholar
Arik, M., Bray, J., and Weaver, S., Nanosci. Nanotechnol. Lett. 2, 189 (2002).CrossRefGoogle Scholar