Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T08:59:36.294Z Has data issue: false hasContentIssue false

Nanoprobe Diffusion in Poly(Vinyl-alcohol) Gels and Solutions: Effects of pH and Dehydration

Published online by Cambridge University Press:  22 January 2014

Hacène Boukari
Affiliation:
Department of Physics and Engineering, Delaware State University, Dover, DE 19901
Candida Silva
Affiliation:
Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
Ralph Nossal
Affiliation:
Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
Ferenc Horkay
Affiliation:
Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
Get access

Abstract

We report fluorescence correlation spectroscopy (FCS) measurements of the translational diffusion of two fluorescent nanoprobes, rhodamine (R6G) and carboxytetramethylrhodamine (TAMRA), embedded in poly(vinyl alcohol) (PVA) solutions and gels. The diffusion coefficient was measured as a function of the PVA concentration and pH. Furthermore, we designed and built an optical chamber to determine the diffusion coefficient of the nanoprobes within the PVA solutions and gels subjected to controlled dehydration. We find that 1) lowering pH causes an apparent slowing down of the diffusion of the nanoprobes, 2) increase of PVA concentration and crosslink density also induce slowing down of both nanoprobes, and 3) dehydration induces systematic decrease of the diffusion of TAMRA in both solutions and gels. Taken together, these results demonstrate that transient physical interactions between the nanoprobes and the PVA linear polymers have a significant effect upon nanoprobe diffusion.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hoffman, A.S., Advanced Drug Delivery Reviews 54, 3 (2002).CrossRefGoogle Scholar
Cascone, M. G., Lazzeri, L., Sparvoli, E., Scatena, M., Serino, L.P., and Danti, S. Journal of Materials Science- Materials in Medicine 15, 1309 (2004).CrossRefGoogle Scholar
Peppas, N.A. and Kim, B. Journal of Drug Delivery Science and Technology 2006, 16, 11 (2006).CrossRefGoogle Scholar
Nuttelman, C. R., Henry, S. M., Anseth, K. S., Biomaterials 23, 3617 (2002).CrossRefGoogle Scholar
Schmedlen, R. H., Masters, K. S., West, J. L., Biomaterials 23, 4325 (2002).CrossRefGoogle Scholar
Michelman-Ribeiro, A., Boukari, H., Nossal, R., Horkay, F. Macromolecules 2004, 37, 10212.CrossRefGoogle Scholar
Michelman-Ribeiro, A., Horkay, F., Nossal, R., and Boukari, H., Biomacrolecules 8, 1595 (2007).CrossRefGoogle Scholar
Langevin, D. and Rondelez, F. Polymer 1978, 19, 1875.CrossRefGoogle Scholar
De Gennes, P-G. Scaling Concepts in Polymer Physics; Cornell University Press; Ithaca, NY, 1979.Google Scholar
Doi, M, Edwards, S. F. The Theory of Polymer Dynamics (Clarendon; Oxford, U.K., 1986.)Google Scholar
Horkay, F., Hecht, A-M, Mallam, S., Geissler, E., and Rennie, A. R., Macromolecules 24, 2896 (1991).CrossRefGoogle Scholar
Horkay, F., Hecht, A-M., Geissler, E. Macromolecules 1994, 27, 1795.CrossRefGoogle Scholar
Boukari, H., Silva, C., Nossal, R., and Horkay, F., Bioinspired Polymer Gels and Networks, edited by Horkay, F., Langrana, N.A., Ryan, A.J., and Londono, J.D. (Mater. Res. Soc. Symp. Proc. 1060E, Warrendale, PA, 2008), 1060-LL07-03.Google Scholar
Boukari, H., Nossal, R., and Sackett, D. L., Biochemistry 42, 1292 (2003).CrossRefGoogle Scholar
Webb, W. W. Appl. Opt. 2001, 40, 3969.CrossRefGoogle Scholar
Aragon, S. R. and Pecora, R. J. Chem. Phys. 1976, 64, 1791.CrossRefGoogle Scholar
Krichevsky, O. and Bonnet, G. Reports on Progress in Physics 2002, 65, 251.CrossRefGoogle Scholar
Chen, Y., Müller, J. D., Berland, K. M., Gratton, E., Methods 19, 234 (1999).CrossRefGoogle Scholar
Digman, M. A. and Gratton, E., Annu Rev Phys Chem. 62, 645668 (2011).CrossRefGoogle Scholar
Zustiak, S. P., Boukari, H., and Leach, J. B., Soft Matter 6 36093618 (2010).CrossRefGoogle Scholar
Zustiak, S. P., Riley, J., Boukari, H., Gandjbakhche, H. A., Nossal, R., Journal of Biomedical Optics 17(12), 125004–125004 (2012).CrossRefGoogle Scholar
Lee, J., Masato, S., Kiminori, U. and Mochida, J., BMC Biotechnology. 11(1), 19 (2011).CrossRefGoogle Scholar
Zustiak, S. P., Nossal, R. and Sackett, D. L., Biophys J. 101(1), 255264 (2011).CrossRefGoogle Scholar
Stylianopoulos, T., Poh, M. Z., Insin, N., Bawendi, M. G., Fukumura, D., Munn, L. L. and Jain, R. K., Biophys J. 99(5), 13421349 (2010).CrossRefGoogle Scholar