Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T03:57:24.182Z Has data issue: false hasContentIssue false

Nano-Photoluminescence Studies of Self-Assembled Quantum Dots

Published online by Cambridge University Press:  10 February 2011

H. Htoon
Affiliation:
Department of Physics University of Texas at Austin, Austin Texas 78712
Hongbin Yu
Affiliation:
Department of Physics University of Texas at Austin, Austin Texas 78712
D. Kulik
Affiliation:
Department of Physics University of Texas at Austin, Austin Texas 78712
J. W. Keto
Affiliation:
Department of Physics University of Texas at Austin, Austin Texas 78712
O. Baklenov
Affiliation:
Department of Electrical and Computer Engineering, University of Texas at Austin, Austin Texas 78712
A. L. Holmes Jr
Affiliation:
Department of Electrical and Computer Engineering, University of Texas at Austin, Austin Texas 78712
C. K. Shih*
Affiliation:
Department of Electrical and Computer Engineering, University of Texas at Austin, Austin Texas 78712
*
Author to whom correspondence should be addressed. email: [email protected]
Get access

Abstract

Two simple and effective far-field-optics-based methods capable of isolating photoluminescence peaks of different individual self assembled quantum dots (SAQD's) with nanometer scale precision are presented. By using these methods, we performed the temperature and electric field dependent studies on the optical properties of SAQD's. We found temperature induced inter-dot carrier transfer among neighboring quantum dots (QD's) and observed the quantum confined stark effect (QCSE).

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hess, H. F., Betzig, E., Harris, T. D., Pfeiffer, L. N., West, K. W., Science, 264, 1740(1994).Google Scholar
2.Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S., Park, D., Science. 273, 87(1996).Google Scholar
3.Hessman, D., Castrillo, P., Pistol, M. E., Pryor, C., and Samuelson, L., Appl. Phys. Lett. 69, 749(1996).Google Scholar
4.Htoon, H., Hongbin, Yu, Kulik, D., Keto, J., Baklenov, O., Holmes, A. L Jr and Streetman, B. G. and Shih, C. K., Phys. Rev. B 60, 11026(1999)Google Scholar
5.Gelles, J., Schnapp, B.J., and Sheetz, M.P., Nature 331, 450(1988).Google Scholar
6.baklenov, O., Huffaker, D., Anselm, A., Deppe, D., Streetman, B.., J. Appl. Phys. 82. 6362 (1997)Google Scholar
7.Liu, N., Tersoff, J., Baklenov, O., Holmes, A. L Jr. and Shih, K., Phys. Rev. Lett 84, 334(2000)Google Scholar
8. Absorption depth of GaAs at 1.5eV (-800nm) can be computed from the data presented in Aspnes, D.E, Studna, A. A., Phys. Rev. B 27, 985(1983).Google Scholar
9.Baklenov, O., Nie, H., Campbell, J., Streetman, B. G. and Holmes, A. L. Jr. J. Vac. Sci Technol. B 17, 1124(1999).Google Scholar
10.Heller, W., Bockelmann, U. and Abstreiter, G., Phys. Rev. B, 57, 6270(1998).Google Scholar
11.Raymond, S., Reynold, J. P., Merz, J. L., Fafard, S., Feng, Y., and Charbonneau, S., Phys. Rev. B 58, 13415(1998).Google Scholar
12.Xie, Q., Madhukar, A., Chen, P. and Kobayashi, N. P., Phys. Rev. Lett. 75, 2542(1995).Google Scholar