Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T08:22:06.474Z Has data issue: false hasContentIssue false

Nanopatterning of Si/SiGe Two-dimensional Hole Gases by PFOTS-aided AFM Lithography of Carrier Supply Layer

Published online by Cambridge University Press:  01 February 2011

Kun Yao
Affiliation:
[email protected], Princeton University, Princeton Institute for the Science and Technology of Materials,Department of Electrical Engineering, E-Quad, Olden Street, Princeton, NJ, 08544, United States, 1-609-258-6624, 1-609-258-1840
James C Sturm
Affiliation:
[email protected], Princeton University, Princeton Institute for the Science and Technology of Materials,Department of Electrical Engineering, E-Quad, Olden Street, Princeton, NJ, 08544, United States
Get access

Abstract

The nanopatterning of Si/SiGe layers by PFOTS (perfluorooctyl trichlorosilane) -aided AFM (atomic force microscopy) lithography is demonstrated. We use self-assembled PFOTS monolayers as a resist for AFM exposure and then transfer patterns in to underlying SiGe layers by a two-step selective wet etching. Linewidths well under 100nm can be achieved with improved uniformity and repeatability compared to AFM lithography without PFOTS. This lithography technique was used to pattern the carrier supply layer in Si/SiGe 2-D hole gases to localize holes for epitaxially passivated quantum dot applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bo, X.-Z., Rokhinson, L. P., Tsui, D. C., and Sturm, J. C., Tech. Dig. Device Research Conference, pp.129130 (2003).Google Scholar
2. Bierbaum, K., Grunze, M., Baski, A. A., Chi, L. F., Schrepp, W., and Fuchs, H., Langmuir 11, 2143 (1995).Google Scholar
3. Snow, E. S. and Campbell, P. M., Appl. Phys. Lett. 64, 1932 (1994).Google Scholar
4. Bo, X.-Z., Rokhinson, L. P., Yin, H., Tsui, D.C. and Strum, J. C., Appl. Phys. Lett. 81, 3263 (2002).Google Scholar
5. Carns, T. K., Tanner, M. O., and Wang, K. L., J. Electrochem. Soc. 142, 1260 (1995).Google Scholar
6. Lee, S., Kim, J., Shin, W.S., Lee, H.-J., Koo, S., and Lee, H., Mater. Sci. Eng. C24, 3 (2004).Google Scholar
7. Sagiv, J., J. Am. Chem. Soc. 102, 92 (1980).Google Scholar
8. Bo, X.-Z., Rokhinson, L. P., Yin, H., Tsui, D. C., and Sturm, J. C. in SiGe nanostructures fabricated by atomic force microscopy oxidation, edited by En, W. G., Jones, E. C., Sturm, J. C., Chan, M. J., Tiwari, S., and Hirose, M., (Mater. Res. Soc. Symp. Proc. 686, 2001), pp. A6.5.1– A6.5.6.Google Scholar
9. Venkataraman, V., Schwartz, P.V., and Sturm, J.C., Appl. Phys. Lett. 59, 2871 (1991).Google Scholar
10. Bo, X.-Z., Rokhinson, L. P., and Sturm, J. C., J. Appl. Phys., to be published 2006.Google Scholar