No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
We studied the use of nanopatterned hydrogels as a possible foundation for medical devices for the detection of Staphylococcus Aureus. Nanopatterned hydrogels, approximately 200 nm in diameter, were created by locally crosslinking dry amine-terminated poly(ethylene glycol) [PEG] (6000 Da) thin films using a focused electron beam. These gels then had a dry height of 50 nm and a swell ratio of about five. They were patterned into arrays with approximately 500 nm inter-gel spacing. These arrayed gels were functionalized with Immunoglobulin G [IgG], a biomolecule that binds Protein A. We are interested in seeing whether these arrayed gels can be used for bacterial capture and subsequent detection. We show, using an assay that binds IgG to Protein A expressing Staphylococcus Aureus [S.Aureus], that nanopatterned hydrogels can indeed be used as probes for detection. We further show that the specificity of our assay by using a knockout variant of S.Aureus that doesn't express Protein A as a negative control.