Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:34:18.950Z Has data issue: false hasContentIssue false

Nanoparticles of metallic Cobalt and Nickel prepared by ion implantation into SiO2

Published online by Cambridge University Press:  17 March 2011

O. Cíntora-González
Affiliation:
Groupe des Matériaux Inorganiques Institut de Physique et Chimie des Matériaux de Strasbourg (UMR7504 CNRS-ULP-ECPM) 23 rue du Loess 67037 Strasbourg Cedex, France Laboratoire PHASE (UPR292 CNRS), 23 rue du Loess 67037 Strasbourg, France
C. Estournès
Affiliation:
Groupe des Matériaux Inorganiques Institut de Physique et Chimie des Matériaux de Strasbourg (UMR7504 CNRS-ULP-ECPM) 23 rue du Loess 67037 Strasbourg Cedex, France
D. Muller
Affiliation:
Laboratoire PHASE (UPR292 CNRS), 23 rue du Loess 67037 Strasbourg, France
M. Richard-Plouet
Affiliation:
Groupe des Matériaux Inorganiques Institut de Physique et Chimie des Matériaux de Strasbourg (UMR7504 CNRS-ULP-ECPM) 23 rue du Loess 67037 Strasbourg Cedex, France
A. Traverse
Affiliation:
Lure (UMR130 CNRS), Bâtiment 209A, Université de Paris-Sud, 91405 Orsay Cedex, France
J. L. Guille
Affiliation:
Groupe des Matériaux Inorganiques Institut de Physique et Chimie des Matériaux de Strasbourg (UMR7504 CNRS-ULP-ECPM) 23 rue du Loess 67037 Strasbourg Cedex, France
J.J. Grob
Affiliation:
Laboratoire PHASE (UPR292 CNRS), 23 rue du Loess 67037 Strasbourg, France
Get access

Abstract

The structural and magnetic properties of nano-sized particles of transition metals (Co and Ni) implanted into amorphous SiO2 are investigated. The SiO2 substrates used were as grown on a silicon (100) wafer under wet O2 atmosphere. The metals were implanted as singly charged atoms energized to 30 or 160 keV. Transmission Electron microscopy (TEM) observations and X-ray absorption spectroscopy (XAS) show that M+ implantation results in the formation of metallic nanoparticles at the vicinity of the surface whereas oxide particles (< 1 nm) are formed in a deeper region. After thermal treatment under hydrogen, TEM evidences the disappearance of the oxide region and an increase in the size of the metallic particle. XAS shows that cobalt and nickel are entirely in the metallic form and saturation magnetization becomes close to the theoretical value.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gong, W., Li, H., Zhao, Z. and Chen, J., J. Appl. Phys. 69, 5119 (1991).Google Scholar
2. Honda, S., Okada, T., Nawate, M. and Tokumoto, M., Phys. Rev. 56 (22), 14566 (1997).Google Scholar
3. Lutz, T., Estournès, C. and Guille, J.L., J. of Sol-Gel Science and Technology 13, 929 (1998).Google Scholar
4. Schweyer, F., Estournès, C., Richard, M., Guille, J. L., Rosé, J., Braunstein, P., Paillaud, J. L. and Kessler, H., Chem. Commun. 14, 1271 (2000).Google Scholar
5. Ely, T. Ould, Amiens, C., Chaudret, B., Snoeck, E., Verlest, M., Respaud, M. and Broto, J.M., Chem. Mater. 11, 526 (1999).Google Scholar
6. Jung, J. S., Chae, W. S., McIntyre, R. A., Seip, C. T., Wiley, J.B. and O'Connor, C. J., Mat. Res. Bull. 34 (9), 1353 (1999).Google Scholar
7. Estournès, C., Lutz, T. and Guille, J. L., J. Non-Cryst. Solids 197, 192 (1996).Google Scholar
8. Estournès, C., Lutz, T., Happich, J., Quaranta, T., Wissler, P. and Guille, J. L., J. Mag. Mag. Mat. 173, 83 (1997).Google Scholar
9. Magruder, R. H. II, Morgan, S.H., Weeks, R.A. and Zuhr, R.A.J., J. Non-Cryst. Solids 120, 241 (1990).Google Scholar
10. Magruder, R. H. II, Weeks, R.A., Zuhr, R.A.J. and Hensley, D.K., Nucl. Inst. And Meth. B 141, 575 (1998).Google Scholar
11. Bertoncello, R., Glisenti, A., Granozzi, G., Battalin, G., Caccavale, F., Cattaruzza, E. and Mazzoldi, P., J. Non-Cryst. Solids 162 (3), 205 (1993).Google Scholar
12. Battaglin, G., Cattaruzza, E., D'acapito, F., Gonella, F., Mazzoldi, P., Mobilios, S. and Priolo, F., Nucl. Inst. And Meth. B 141 (1-4), 252 (1998).Google Scholar
13. Borowski, M., Traverse, A. and Dallas, J.P., J. Mat. Res. 10 (12), 3136 (1995).Google Scholar
14. Zanghi, D., Traverse, A., Alves, M.C. Martins, Girardeau, T. and Dallas, J.P., Nucl. Inst. And Meth. B 155, 416 (1999).Google Scholar
15. Cíntora-González, O., Estournès, C., Guille, J.L., Muller, D. and Grob, J-J, Nucl. Inst. And Meth. B 147, 422 (1999).Google Scholar
16. Benedict, J., Anderson, R. and Klepeis, S. J., Mat. Res. Soc. Symp. Proc. 254, 121 (1992).Google Scholar
17. Cíntora-González, O., Estournès, C., Richard-Plouet, M., Guille, J.L., Muller, D. and Grob, J- J, Nucl. Inst. And Meth. B in press 2001.Google Scholar
18. Cíntora-González, O., PhD thesis, University Louis Pasteur Strasbourg, France, 2001.Google Scholar
19. Borowski, M., J. Phys. IV 7 C2, 259 (1997).Google Scholar
20. Sakurai, H., Itoh, F., Oike, H., Tsurui, T., Yamamuro, S., Sumiyama, K. and Hihara, T., J.Phys.: Condens. Matter 12, 3451 (2000).Google Scholar