Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:52:03.992Z Has data issue: false hasContentIssue false

Nano-Flower MnO2 Coated Graphene Composite Electrodes for Energy Storage Devices

Published online by Cambridge University Press:  03 March 2011

Qian Cheng
Affiliation:
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan Doctoral Program in Materials Science and Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan
Jie Tang
Affiliation:
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan Doctoral Program in Materials Science and Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan
Jun Ma
Affiliation:
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
Han Zhang
Affiliation:
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
Norio Shinya
Affiliation:
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
Lu-Chang Qin
Affiliation:
Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA
Get access

Abstract

Graphene, two-dimensional layers of sp2-bonded carbon, has many unique properties. In this paper, graphene is decorated with flower-like MnO2 nanostructures for the application in energy storage devices. The as-prepared graphene and MnO2 nano-flowers, which were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), were assembled into an asymmetric supercapacitor. The specific capacitance of the graphene electrode reached 245 F/g at a charging current of 1 mA. The MnO2 nano-flowers which consisted of tiny rods with a diameter of less than 10 nm were coated onto the graphene electrodes by electrodeposition. The specific capacitance after the MnO2 deposition is 328 F/g at the charging current of 1 mA with an energy density of 11.4Wh/kg and power density of 25.8 kW/kg. This work suggests that our graphene-based electrodes can be a promising candidate for high-performance energy storage devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Simon, P. and Gogotsi, Y., Nature Mater. 7, 845854 (2008).Google Scholar
2. Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., and Roth, S., Nature 446, 6063 (2007).Google Scholar
3. Gomez-Navarro, C., Weitz, R. T., Bittner, A. M., Scolari, M., Mews, A., Burghard, M., and Kern, K., Nano Lett. 7, 34993503 (2007).Google Scholar
4. Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., and Chen, Y., ACS Nano 2, 463470 (2008).Google Scholar
5. Tung, V. C., Allen, M. J., Yang, Y., and Kaner, R. B., Nature Nanotechnol. 4, 2529 (2009).Google Scholar
6. Stoller, M. D., Park, S. J., Zhu, Y. W., An, J. H., and Ruoff, R. S., Nano Lett. 8, 34983502 (2008).Google Scholar
7. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., and Ruoff, R. S., Nature 442, 282286 (2006).Google Scholar
8. Geim, A. K. and Kim, P., Sci. Am. 298(4), 9097 (2008).Google Scholar
9. Thackeray, M. M., Prog. Solid State Ch 25, 171 (1997).Google Scholar
10. Ammundsen, B. and Paulsen, J., Adv. Mater. 13, 943956 (2001).Google Scholar
11. Whittingham, M. S., Chemical Reviews 104, 42714301 (2004).Google Scholar
12. Yan, J., Fan, Z. J., Wei, T., Qian, W. Z., Zhang, M. L., and Wei, F., Carbon 48, 38253833 (2010).Google Scholar
13. Ali, F., Agarwal, N., Nayak, P. K., Das, R., and Periasamy, N., Curr. Sci. India 97, 682684 (2009).Google Scholar
14. Liu, R. and Lee, S. B., J. Am. Chem. Soc. 130, 29422943 (2008).Google Scholar
15. Ma, S. B., Nam, K. W., Yoon, W. S., Yang, X. Q., Ahn, K. Y., Oh, K. H., and Kim, K. B., J. Power Sources 178, 483489 (2008).Google Scholar