Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:50:06.577Z Has data issue: false hasContentIssue false

Nano-film and Coating for Biomedical Application Prepared by Plasma-based Technologies

Published online by Cambridge University Press:  01 February 2011

Xuanyong Liu
Affiliation:
[email protected], Chinese Academy of Sciences, Shanghai Institute of Ceramics, 1295 Dingxi Road, Shanghai, 200050, China, People's Republic of, 86-21-52412409, 86-21-52413903
Paul K Chu
Affiliation:
[email protected], City University of Hong Kong, Department of Physics & Materials Science, Kowloon, N/A, Hong Kong
Get access

Abstract

Nanosized materials have been widely applied in biomedical engineering due to their unique nano-effects. In this work, nano-TiO2 coatings and ZrO2 films were prepared using plasma technologies including plasma spraying and cathodic arc plasma deposition. The microstructure the coatings and films were assessed using TEM, SEM, and AFM. Their bioactivity and biocompatibility were evaluated using simulated body fluid soaking tests and cell culturing. Films and coatings with nanostructured surfaces can be obtained using plasma spraying and cathodic arc plasma deposition. The nanostructured surfaces can endow the films and coatings excellent bioactivity and biocompatibility. The UV-illuminated and hydrogen implanted nano-TiO2 coatings and ZrO2 films can induce bone-like apatite formation on their surfaces after immersion in a simulated body fluid for a certain period of time. The nano-TiO2 coating has better cytocompatibility than the micro-TiO2 coating, and the cytocompatibility can be improved by UV-illumination and hydrogen implantation. The bioactivity of the ZrO2 thin film deteriorates after thermal treated. The size of the particles on the surface of the film is thought to be one of the key factors responsible for the bioactivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Balasundaram, G. and Webster, T. J, J. Mater. Chem. 16, 3737-3745 (2006).Google Scholar
2. Webster, T. J, Siegel, R. W and Bizios, R., Biomaterials 20, 12211227 (1999).Google Scholar
3. Webster, T. J, Ergun, C., Doremus, R. H, Siegel, R. W and Bizios, R., Biomaterials 21, 18031810 (2000).Google Scholar
4. Webster, T. J, Ergun, C., Doremus, R. H, Siegel, R. W and Bizios, R., Biomaterials 22, 13271333 (2001).Google Scholar
5. Price, R. L, Gutwein, L. G, Kaledin, L., Tepper, F. and Webster, T. J, J. Biomed. Mater. Res. 67A, 1284-1293 (2003).Google Scholar
6. Stevens, M. M and George, J. H, Science, 310, 11351138 (2005).Google Scholar
7. Wilson, C. J, Clegg, R. E, Leavesley, D. I and Pearcy, M. J, Tissue Eng. 11, 118 (2005).Google Scholar
8. Webster, T. J and Ejiofor, J. U, Biomaterials 25, 47314739 (2004).Google Scholar
9. Price, R. L, Waid, M. C, Haberstroh, K. M and Webster, T. J, Biomaterials 24, 18771887 (2003).Google Scholar
10. Webster, T. J and Smith, T. A, J. Biomed. Mater. Res. 74A, 677-686 (2005).Google Scholar
11. Manjubala, I., Scheler, S., Bossert, J. and Jandt, K. D, Acta Biomater. 2, 7584 (2006).Google Scholar
12. Chu, P. K, Chen, J. Y, Wang, L. P, and Huang, N., Mater. Sci. Eng. R 36, 143206 (2002).Google Scholar
13. Bouos, M.I., Fauchais, P. and Vardelle, A., in Plasma Spraying: Theory and Application, edited by Suryanarayanan, R., (World Scientific, Singapore, 1993) pp. 3.Google Scholar
14. Zhang, T., Chu, P. K and Brown, I. G, Appl. Phys. Lett. 80, 37003702 (2002).Google Scholar
15. Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T. and Yamamuro, T., J. Biomed. Mater. Res. 24, 721734 (1990).Google Scholar
16. Oliva, A., Salerno, A., Locardi, B., Riccio, V., Ragione, F. D, Iardino, P., and Zappia, V., Biomaterials 19, 10191025 (1998).Google Scholar
17. Liu, X. Y, Zhao, X. B, Fu, R. K. Y., Ho, J. P. Y., Ding, C. X, and Chu, P. K, Biomaterials 26, 61436150 (2005).Google Scholar
18. Ferraris, M., VerneH, E., Appendino, P., Moisescu, C., Krajewski, A., Ravaglioli, A. and Piancastelli, A., Biomaterials 21, 765773 (2000).Google Scholar
19. Liu, X. Y, Ding, C. X, Surf. Coat. Tech. 172, 270278 (2003).Google Scholar
20. Svetina, M., Ciacchi, L. C, Sbaizero, O., Meriani, S. and Vita, A. de, Acta Mater. 49, 21692177 (2001).Google Scholar
21. Li, P., Ohtsuki, C., Kokubo, T., Nakanishi, K., Soga, N. and Groot, K. de, J. Biomed. Mater. Res. 28, 715 (1994).Google Scholar
22. Vayssiéres, L., Chanéac, C., Trone, E. and Joliver, J. P, Colloid, J.. Interface Sci. 205, 205212 (1998).Google Scholar
23. Zhang, H., Penn, R. L, Hamers, R. J and Banfield, J. F, J. Phys. Chem. B 103, 46564662 (1999).Google Scholar
24. Balasundaram, G., Sato, M. and Webster, T. J, Biomaterials 14, 27982805 (2006).Google Scholar
25. Webster, T. J, in Advances in Chemical Engineering, edited by Ying, J., (Academic Press Inc., CA, 2003) pp. 125166.Google Scholar
26. Webster, T. J, Ergun, C., Doremus, R. H, Siegel, R. W and Bizios, R., J. Biomed. Mater. Res. 51, 475483 (2000).Google Scholar