Article contents
Nanofiller-Polymer Interactions At and Above the Glass Transition Temperature
Published online by Cambridge University Press: 21 March 2011
Abstract
Rheological data are reported for a series of fumed silica filled PVAc samples, using fillers of different specific surface areas and surface treatments. Data at the glass transition temperature and 45 C above Tg are presented. The addition of filler systematically increases Tg, and all samples obey time-temperature superposition. However, temperature normalized and frequency normalized plots of loss modulus indicate that there is no change in the dispersion of the glass transition, with the only exception being a surface modified with covalently bonded polymer chains. Thus, contrary to expectations, an increase in filler content or change in surface treatment has no effect on the relative shape of the relaxation time spectrum at the glass transition. At 45 C above Tg, different behavior is observed. The filler concentration has a major effect on the nonlinearity of dynamic moduli vs. strain amplitude, with higher filler content reducing the strain amplitude at which nonlinear behavior is observed. Specific filler surface treatments result in major changes in the shape of the loss factor versus strain amplitude relationship. These results suggest that interfacial interactions strongly modify the far-field polymer behavior with respect to chain entanglement slippage at large strains.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2001
References
REFERENCES
- 4
- Cited by