Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T11:22:57.005Z Has data issue: false hasContentIssue false

Nanofabrications for Information Technology

Published online by Cambridge University Press:  01 February 2011

Kyung Choi*
Affiliation:
[email protected], Bell Labs, Nanotechnology, 600-700 mauntain Ave, Murray Hill, NJ, 07974, United States
Get access

Abstract

Since industry has been seeking for advanced nanotechnology, development of new nano-materials and nanofabrication techniques has been a key contributor to satisfy our growing demands on miniaturization. This will present technological emergences in fabrications of novel optoelectronic devices by developing new materials since nanotechnology is a part of chemical domain. It will cover up as how chemists can contribute to this area to fabricate functional nanofabrications for information technology. For example, we developed a new class of PDMS stamps to overcome the limitations and thus to extend current soft lithography to advanced level for developing nanoscale-devices. Patterns fabricated using functional polymers also have many information technology applications to integrate optoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, E., Xia, Y. N., and Whitesides, G. M., J. Am. Chem. Soc. 118, 5722 (1996).Google Scholar
2. Xia, Y. N., Rogers, J. A., Paul, K. E., and Whitesides, G. M., Chem. Rev. 99, 1823 (1999).Google Scholar
3. Choi, K. M. and Rogers, J. A., J. Am. Chem. Soc., 125, 4060 (2003).10.1021/ja029973kGoogle Scholar
4. Choi, K. M., J. Phys. Chem. 109, 21525 (2005).Google Scholar
5. Conrad, P. G., Nishmura, P. T., Aherne, D., Schwartz, B. J., Wu, D., Fang, N., Zhang, X., Roberts, J., Shea, K. J., Adv. Mater. 11, 5274 (2003).Google Scholar
6. Thorsen, T., Maerkl, S. J. and Quake, S. R., Science, 298, 580 (2002).Google Scholar
7. Duan, X., Niu, C., Sahi, V., Chen, J., Parce, J. W., Empedocles, S., Goldman, J. L., Nature 425, 274 (2003).Google Scholar
8. Wu, T., Mei, Y., Cabral, J., Xu, C., Beers, K. L., J. Am. Chem. Soc. 126, 9880 (2004).Google Scholar
9. Kobayashi, J., Mori, Y., Okamoto, K., Akiyama, R., Ueno, M., Kitamori, T., Kobayashi, S., Science 304, 1305 (2004).Google Scholar