Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-16T20:16:58.605Z Has data issue: false hasContentIssue false

Nanocrystalline gold and gold-palladium as effective catalysts for selective oxidation

Published online by Cambridge University Press:  01 February 2011

Jennifer Edwards
Affiliation:
Department of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
Philip Landon
Affiliation:
Department of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
Albert F. Carley
Affiliation:
Department of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
Andrew Herzing
Affiliation:
Center for Advanced Materials and Nanotechnology, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195, USA.
Masashi Watanabe
Affiliation:
Center for Advanced Materials and Nanotechnology, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195, USA.
Christopher J. Kiely
Affiliation:
Center for Advanced Materials and Nanotechnology, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195, USA.
Graham Hutchings
Affiliation:
[email protected], Cardiff University, Chemistry, Park Place, Cardiff, N/A, N/A, United Kingdom
Get access

Abstract

The recent interest in oxidation catalysis provides the focus for this paper. Until recently gold has been overlooked as a key component of both homogeneous and heterogeneous catalysts. However, the observation in the 1980's that nanocrystalline gold supported on oxides was an effective catalyst for low temperature carbon monoxide oxidation has now captured the imagination of many researchers. At present low temperature carbon monoxide oxidation remains an intensely studied field, but in recent years increased emphasis has been placed on using gold catalysts for selective oxidation. For example the oxidation of alkanes, alkenes and alcohols have all been shown to be effective with gold based catalysts. In addition gold palladium catalysts have been shown to be very effective for the direct formation of hydrogen peroxide and this will be described in this paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Haruta, M., Catal. Today 36, 153 (1997).Google Scholar
2. Haruta, M. and Date, M., Appl. Catal. A 222, 427 (2001).Google Scholar
3. Haruta, M., CATTECH 6, 102 (2002).Google Scholar
4. Haruta, M., Chemical Record 3, 75 (2003).Google Scholar
5. Haruta, M., Gold Bull. 37, 27 (2004).Google Scholar
6. Bond, G.C. and Thompson, D.T., Catal. Rev.-Sci. Eng. 41, 319 (1999).Google Scholar
7. Bond, G.C. and Thompson, D.T., Gold Bull. 33, 41 (2000).Google Scholar
8. Thompson, D.T., Appl. Catal. A 243, 201 (2003).Google Scholar
9. Meyer, R., Lemaire, C., Shaikutdinov, Sh. K. and Freund, H.-J., Gold Bull. 37, 72 (2004).Google Scholar
10. Cortie, M.B., Gold Bull. 37, 12 (2004).Google Scholar
11. Hasmi, A.S.K., Angew. Chem.m Int. Ed. 44, 6999 (2005).Google Scholar
12. Hashmi, A.S.K., Gold Bull. 37, 51 (2004).Google Scholar
13. Hutchings, G.J., Gold Bull. 29, 123 (1996).Google Scholar
14. Hutchings, G.J., Gold Bull. 37, 3 (2004).Google Scholar
15. Hutchings, G.J., Catal. Today 100, 55 (2005).Google Scholar
16. Hutchings, G. J. and Scurrell, M. S., CATTECH 7, 90 (2003).Google Scholar
17. Haruta, M., Kobayashi, T., Sano, H., Yamada, N., Chem. Lett. 4, 405 (1987).Google Scholar
18. Sermon, P.A., Bond, G.C. and Wells, P.B., J. Chem. Soc., Faraday Trans. 1 75, 385 (1979).Google Scholar
19. Bailie, J. E. and Hutchings, G. J., Chem. Commun. 2151 (1999).Google Scholar
20. Hutchings, G.J., J. Catal. 96, 292 (1985).Google Scholar
21. Haruta, M., Yamada, N., Kobayashi, T. and Iijima, S., J. Catal. 115 301 (1989).Google Scholar
22. Sinha, A.K., Seelan, S., Tsubota, S. and Haruta, M., Ang. Chemie Int. Ed. 43, 1546 (2004).Google Scholar
23. Chen, S. and Goodman, D.W., Science 306, 252 (2004).Google Scholar
24. Prati, L. and Rossi, M., J. Catal. 176, 552 (1998).Google Scholar
25. Porta, F., Prati, L., Rossi, M., Colluccia, S. and Martra, G., Catal. Today 61, 165 (2000).Google Scholar
26. Bianchi, C., Porta, F., Prati, L. and Rossi, M., Top. Catal. 13, 231 (2000).Google Scholar
27. Prati, L., Gold Bull. 32, 96 (1999).Google Scholar
28. Carrettin, S., McMorn, P., Johnston, P., Griffin, K. and Hutchings, G.J., Chem. Commun., 696 (2002).Google Scholar
29. Carretin, S., McMorn, P., Johnston, P., Griffin, K., Kiely, C.J. and Hutchings, G.J., Phys. Chem. Chem. Phys. 5, 1329 (2003).Google Scholar
30. Abad, A., Conception, P., Corma, A., Garcia, H., Angew. Chemie Int. Ed. 44, 4066 (2005).Google Scholar
31. Hughes, M. D., Jenkins, P., McMorn, P., Landon, P., Carley, A. F., Attard, G. A., Hutchings, G. J., King, F., Stitt, E.H., Johnston, P., Griffin, K., Kiely, C.J., Nature 437, 1132 (2005).Google Scholar
32. Benson, M. and Gallezot, P., Catal. Today 57, 127 (2000).Google Scholar
33. Sheldon, R.A., Stud. Surf. Sci. Catal. 110, 151 (1997).Google Scholar
34. Jenzer, G., Mallet, T., Maciejewski, M., Eigenmann, F., Baiker, A., Appl. Catal. A. 208, 125 (2001).Google Scholar
35. Hess, H. T. in Kirk-Othmer Encyclopedia of Chemical Engineering, edited by Kroschwitz, I. and Howe-Grant, M. (Wiley, 1995) 13, p961.Google Scholar
36. Van Weynbergh, J., Schoebrichts, J.-P. and Colery, J.-C., US Pat. 5447706, 1995.Google Scholar
37. Zhou, B. and Lee, L.-K., US Pat. 6168775, 2001.Google Scholar
38. Wanngard, J., Eur. Pat. 0816286 Al, 1998.Google Scholar
39. Chuang, K. T. and Zhou, B., US Pat. 5338531.Google Scholar
40. Hayashi, T., Tanaka, K. and Haruta, M., J. Catal. 178, 566 (1998).Google Scholar
41. Landon, P., Collier, P.J., Papworth, A.J., Kiely, C.J. and Hutchings, G.J., Chem. Commun. 2058 (2002).Google Scholar
42. Landon, P., Collier, P.J., Carley, A.F., Chadwick, D., Papworth, A.J., Burrows, A., Kiely, C.J. and Hutchings, G.J., Phys. Chem. Chem. Phys. 5, 1917 (2003).Google Scholar
43. Edwards, J. K., Solsona, B., Landon, P., Carley, A. F., Herzing, A., Watanabe, M., Kiely, C. J. and Hutchings, G. J., J. Mater. Chem. 15, 4595 (2005).Google Scholar
44. Bonnet, N., J. Microscopy 190, 2 (1998).Google Scholar
45. Watanabe, M., Burrows, A.. Herzing, A.A., Kiely, C.J., Williams, D.B., Hutchings, G.J. and Liz-Marzin, L.M., Microscopy Microanal., August, 468CD (2004).Google Scholar