Article contents
Nanocrystalline Germanium and Germanium Carbide Films and Devices
Published online by Cambridge University Press: 01 February 2011
Abstract
Nanocrystalline Ge and its alloys with C are potentially useful materials for solar cells, thin film transistors and image sensors. In this paper, we discuss the growth and properties of these materials using remote, low pressure ECR plasma deposition. The materials and devices were grown from mixtures of germane, methane and hydrogen. It was found that high hydrogen dilutions (>40:1) were needed to crystallize the films. Studies of x-ray spectra revealed that the grains were primarily <220> oriented. The grain size was a strong function of hydrogen dilution and growth temperature. Higher growth temperatures resulted in larger grain size. High hydrogen dilution tended to reduce grain size. These results can be explained by recognizing that excessive amounts of bonded H can inhibit the growth of <220> grain, which is the thermodynamically favorable direction for grain growth. Grain sizes as large as 80 nm were obtained in nc-Ge. Addition of C reduced the crystallinity. Mobility and carrier concentrations in nc-Ge were measured using Hall effect. Mobility values of ˜5 cm2/V-s and carrier concentrations of ˜1x1016/cm3 were obtained in larger grains. p+nn+ devices were fabricated on stainless steel substrates and compared with similar devices deposited in nc-Si:H. It was found that the voltage decreased and current increased in nc-Ge devices, in comparison with devices in nc-Si:H. Addition of C to Ge devices increased the open circuit voltage and shifted the quantum efficiency to larger photon energies, as expected.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005
References
- 2
- Cited by