Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T08:59:49.588Z Has data issue: false hasContentIssue false

Nanocrystalline fcc metals: bridging experiments with simulations

Published online by Cambridge University Press:  15 March 2011

H. Van Swygenhoven
Affiliation:
Paul Scherrer Insitute, ASQ/NUM – Computer Modelling and Experiments, PSI-Villigen, Switzerland
P. M. Derlet
Affiliation:
Paul Scherrer Insitute, ASQ/NUM – Computer Modelling and Experiments, PSI-Villigen, Switzerland
A. G. Frøseth
Affiliation:
Paul Scherrer Insitute, ASQ/NUM – Computer Modelling and Experiments, PSI-Villigen, Switzerland
S. Van Petegem
Affiliation:
Paul Scherrer Insitute, ASQ/NUM – Computer Modelling and Experiments, PSI-Villigen, Switzerland
Z. Budrovic
Affiliation:
Paul Scherrer Insitute, ASQ/NUM – Computer Modelling and Experiments, PSI-Villigen, Switzerland
A. Hasnaoui
Affiliation:
Paul Scherrer Insitute, ASQ/NUM – Computer Modelling and Experiments, PSI-Villigen, Switzerland
Get access

Abstract

Atomistic simulations have provided unprecedented insight into the structural and mechanical properties of nanocrystalline materials, highlighting the role of the non-equilibrium grain boundary structure in both inter- and intra-grains deformation processes. One of the most important results is the capability of the nanosized grain boundary to act as a source and sink for dislocations. However the extrapolation of this knowledge to the experimental regime requires a clear understanding of the temporal and spatial scales of the modelling technique and a detailed structural characterisation of the simulated samples. In this contribution some of the synergies that can be developed between atomistic simulations and experiments for this research field are briefly discussed by means of some typical examples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weertman, J. R., Mechanical behaviour of nanocrystalline metals. In: Nanostructured materials: processing, properties, and potential applications. Norwich (NY): William Andrew Publishing; 2002, Chapter 10 (2002).Google Scholar
2. Kumar, K. S., Swygenhoven, H. Van and Suresh, S., Acta Mater. 51, 5743 (2003).Google Scholar
3. Torre, F. Dalla, Swygenhoven, H. Van and Victoria, M., Acta Mater. 50, 3957 (2002).Google Scholar
4. Torre, F. Dalla, Ph.D. Thesis entitled “Microstructure and Mechanical Properties of Nanocrystalline Ni produced by Three Different Synthesis Techniques”, EPFL, Switzerland, 2003.Google Scholar
5. Wang, Y. M. and Ma, E., Acta Mater. 52, 1699 (2004).Google Scholar
6. Swygenhoven, H. Van, Derlet, P. M., Budrovic, Z. and Hasnaoui, A., Z. Metallkd. 10, 1106 (2003).Google Scholar
7. Derlet, P. M., Hasnaoui, A. and Swygenhoven, H. Van, Scripta Mater. 49, 629 (2003).Google Scholar
8. Yamakov, V., Wolf, D., Phillpot, S. R. and Gleiter, H., Acta. Mater. 40, 61 (2002).Google Scholar
9. Swygenhoven, H. Van, Farkas, D. and Caro, A., Phys. Rev. B 62, 831 (2000).Google Scholar
10. Derlet, P. M. and Swygenhoven, H. Van, Phys. Rev. B 67, 014202 (2003).Google Scholar
11. Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K. and Gleiter, H., Phil. Mag. Lett. 83, 385 (2003).Google Scholar
12. Schiøtz, J. and Jacobsen, K. W., Science 301, 1357 (2003).Google Scholar
13. Honeycutt, D. J. and Andersen, H. C., J. Phys. Chem. 91, 4950 (1987).Google Scholar
14. Warren, B. E., X-ray Diffraction, (Addison-Wesley, Massachusetts, 1969), Chapter 1.Google Scholar
15. Derlet, P. M., Budrovic, Z. and Swygenhoven, H. Van, in preparation.Google Scholar
16. Budrovic, Z., Swygenhoven, H. Van, Derlet, P. M., Petegem, S. Van and Schmidt, B., Science 304, 273 (2004).Google Scholar
17. Derlet, P. M., Meyer, R., Lewis, L. J., Stuhr, U., and Swygenhoven, H. Van, Phys. Rev. Lett. 87, 205501 (2001).Google Scholar
18. Derlet, P. M. and Swygenhoven, H. Van, Phys. Rev. Lett. 92, 035505 (2004).Google Scholar
19. Derlet, P. M., Petegem, S. Van and Swygenhoven, H. Van, in preparation.Google Scholar
20. Petegem, S. Van, Torre, F. Dalla, Segers, D. and Swygenhoven, H. Van, Scripta Mater. 48, 17 (2003).Google Scholar
21. Van Petegem, S, Positron annihilation study of nanocrystallinematerials, Doctoral Thesis, University of Ghent, 2003.Google Scholar
22. Swygenhoven, H. Van and Derlet, P. M., Phys. Rev. B 64, 224105 (2001).Google Scholar
23. Hasnaoui, A., Swygenhoven, H. Van and Derlet, P. M., Phys. Rev. B 66, 184112 (2002).Google Scholar
24. Hasnaoui, A., Swygenhoven, H. Van and Derlet, P. M., Science 300, 1550 (2003).Google Scholar
25. Caturla, M. J., Swygenhoven, H. Van and Derlet, P. M., unpublishedGoogle Scholar
26. Swygenhoven, H. Van, Derlet, P. M. and Hasnaoui, A., Phys. Rev. B 66, 024101 (2002).Google Scholar
27. Derlet, P. M., Swygenhoven, H. Van and Hasnaoui, A., Phil. Mag. 83, 3569 (2003).Google Scholar
28. Frøseth, A. G., Swygenhoven, H. Van and Derlet, P. M., Acta Mater. 52, 2259 (2004).Google Scholar
29. Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K. and Gleiter, H., Nature Mater. 3, 43 (2004).Google Scholar
30. Swygenhoven, H. Van, Derlet, P. M. and Frøseth, A., Nature Mater. in press, (2004).Google Scholar
31. Frøseth, A. G., Derlet, P. M. and Swygenhoven, H. Van, submitted (2004).Google Scholar
32. Hugo, R. C., Kung, H., Weertman, J. R., Mitra, R., Knapp, J. A. and Follstaedt, D. M., Acta Mater., 51, 1937 (2003).Google Scholar
33. Kumar, K. S., Suresh, S., Chisholm, M. F., Horton, J. A., Wang, P., Acta Mater. 51, 387 (2003).Google Scholar
34. Derlet, P. M. and Swygenhoven, H. Van, Phil. Mag. A. 82, 1 (2002).Google Scholar