Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T02:29:47.907Z Has data issue: false hasContentIssue false

My Modeling Nanocluster Formation During Ion Beam Synthesis

Published online by Cambridge University Press:  31 January 2011

Chun-Wei Yuan
Affiliation:
[email protected], University of California, Berkeley, Materials Science, Berkeley, CA 94720, California, United States
Diana O. Yi
Affiliation:
[email protected], University of California, Berkeley, Materials Science, Berkeley, CA 94720, California, United States
Ian D. Sharp
Affiliation:
[email protected], Technische Universtät München, Walter Schottky Institut, Garching, Germany
Swanee J. Shin
Affiliation:
[email protected], University of California, Berkeley, Materials Science, Berkeley, CA 94720, California, United States
Christopher Y. Liao
Affiliation:
[email protected], University of California, Berkeley, Materials Science, Berkeley, CA 94720, California, United States
Julian Guzman
Affiliation:
[email protected], University of California, Berkeley, Materials Science, Berkeley, CA 94720, California, United States
Joel Ager
Affiliation:
[email protected], United States
Eugene Haller
Affiliation:
[email protected], University of California, Berkeley, Materials Science, Berkeley, CA 94720, California, United States
Daryl Chrzan
Affiliation:
[email protected], University of California, Berkeley, Materials Science, Berkeley, CA 94720, California, United States
Get access

Abstract

Ion beam synthesis of nanoclusters is studied via both kinetic Monte Carlo simulations and the self-consistent mean-field solution to a set of coupled rate equations. Both approaches predict a steady-state shape for the cluster size distribution that depends only on a characteristic length determined by the ratio of the effective diffusion coefficient times the effective solubility to the ion flux. The average cluster size in the steady state regime is determined by the implanted species/matrix interface energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ratke, L. and Voorhees, P. W. Growth and Coarsening, 1st ed. (Springer-Verlag, New York, 2002).Google Scholar
2 Bales, G. S. and Chrzan, D. C. Phys. Rev. B 50, 6057 (1994).Google Scholar
3 Bales, G. S. and Zangwill, A. Phys. Rev. B 55, 1973 (1997).Google Scholar
4 Stroscio, J. A. and Pierce, D. T. Phys. Rev. B 49, 8522 (1994).Google Scholar
5 Amar, J. G. and Family, F. Phys. Rev. Lett. 74, 2066 (1995).Google Scholar
6 Ratsch, C. Zangwill, A. Smilauer, P. and VVedensky, D. D. Phys. Rev. Lett. 72, 3194 (1994).Google Scholar
7 Mo, Y. W. Kleiner, J. Webb, M. B. and Lagally, M. G. Phys. Rev. Lett. 66, 1998 (1991).Google Scholar
8 Pimpinelli, A. Villain, J. and Wolf, D. E. Phys. Rev. Lett. 69, 985 (1992).Google Scholar
9 Heinig, K. H. Müller, T., Schmidt, B. Strobel, M. and Möller, W., Appl. Phys. A 77, 17 (2003).Google Scholar
10 Xu, Q. Sharp, I. D. Yuan, C. W. Yi, D. O. Glaeser, A. M. Liao, C. Y. Minor, A. M. Beeman, J. W., Ridgway, M. C. Ager, J. W. III , Chrzan, D. C. et al. , Phys. Rev. Lett. 97, 155701 (2006).Google Scholar
11 Sharp, I. D. Yi, D. O. Xu, Q. Liao, C. Y. Beeman, J. W. Liliental-Weber, Z., Yu, K. M. Zhakarov, D. Ager, J. W. III , Chrzan, D. C. et al. , Appl. Phys. Lett. 86, 063107 (2005).Google Scholar
12 Cattaruzza, E. Gonella, F. Mattei, G. Mazzoldi, P. Gatteschi, D. Sangregorio, C. Falconieri, M. Salvetti, G. and Battaglin, G. Appl. Phys. Lett. 73, 1176 (1998).Google Scholar
13 Jiang, C. Z. and Fan, X. J. Surface and Coatings Technology 131, 330 (2000).Google Scholar
14 Marchi, G. D. Mattei, G. Mazzoldi, P. and Sada, C. J. Appl. Phys. 92, 4249 (2002).Google Scholar
15 Giulian, R. Kluth, P. Araujo, L. L. Llewellyn, D. J. and Ridgway, M. C. Appl. Phys. Lett. 91, 093115 (2007).Google Scholar
16 Ramaswamy, V. Haynes, T. E. White, C. W. MoberlyChan, W. J. Roorda, S. and Aziz, M. J. Nanoletters 5, 373 (2005).Google Scholar
17. Dearnaley, G. Nature 256, 701 (1975).Google Scholar
18 Shinada, T. Okamoto, S. Kobayashi, T. and Ohdomari, I. Nature 437, 1128 (2005).Google Scholar
19 Cowern, N. E. B. and Rafferty, C. S. MRS Bulletin 25, 39 (2000).Google Scholar
20 Yi, D. O. Jhon, M. H. Sharp, I. D. Xu, Q. Yuan, C. W. Liao, C. Y. Ager, J. W. III , Haller, E. E. and Chrzan, D. C. Phys. Rev. B 78, 245415 (2008).Google Scholar
21 Ziegler, J. F. Biersack, J. P. and Littmark, U. The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
22 Kissel, R. and Urbassek, H. M. Nucl. Inst. Meth. Phys. Res. B 180, 293 (2001).Google Scholar
23 Sharp, I. D. Xu, Q. Liao, C. Y. Yi, D. O. Beeman, J. W. Lilienthal-Weber, Z., Yu, K. M. Zakharov, D. N. Ager, J. W. III ., Chrzan, D. C. and Haller, E. E. J. Appl. Phys. 97, 124316 (2005).Google Scholar
24 McBrayer, J. D. Swanson, R. M. and Sigmon, T. W. J. Electrochem. Soc. 133, 1242 (1986).Google Scholar
25 Barenblatt, G. I. Scaling, 1st ed. (Cambridge University Press, 2003).Google Scholar
26 Cowern, N. E. B. Janssen, K. T. F. and Jos, H. F. F. J. Appl. Phys. 68, 6191 (1990).Google Scholar
27 Pelaz, L. Gilmer, G. H. Venezia, V. C. Gossman, H.-J., Jaraiz, M. and Barbolla, J. Appl. Phys. Lett. 74, 2017 (1999).Google Scholar
28Due to the small number of points describing this distribution, the uncertainty in the value of L for Ag is substantial.Google Scholar