Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:40:01.416Z Has data issue: false hasContentIssue false

Mutual Passivation in Dilute GaNxAs1-x Alloys

Published online by Cambridge University Press:  01 February 2011

K. M. Yu
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
W. Walukiewicz
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
J. Wu
Affiliation:
Dept. Chemistry and Chemical Biology, Harvard University, Cambridge, MA
D. E. Mars
Affiliation:
Agilent Laboratories, 3500 Deer Creek Road, Palo Alto, CA 94304
M. A. Scarpulla
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
O. D. Dubon
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
M. C. Ridgway
Affiliation:
Australian National University, Canberra, Australia
J. F. Geisz
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
Get access

Abstract

The dilute GaNxAs1-x alloys (with x up to 0.05) have exhibited many unusual properties as compared to the conventional binary and ternary semiconductor alloys. We report on a new effect in the GaNxAs1-x alloy system in which electrically active substitutional group IV donors and isoelectronic N atoms passivate each other's activity. This mutual passivation occurs in dilute GaNxAs1-x doped with group IV donors through the formation of nearest neighbor IVGa- NAs pairs when the samples are annealed under conditions such that the diffusion length of the donors is greater than or equal to the average distance between donor and N atoms. The passivation of the shallow donors and the NAs atoms is manifested in a drastic reduction in the free electron concentration and, simultaneously, an increase in the fundamental bandgap. This mutual passivation effect is demonstrated in both Si and Ge doped GaNxAs1-x alloys. Analytical calculations of the passivation process based on Ga vacancy mediated diffusion show good agreement with the experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sakai, S., Ueta, Y. and Terauchi, Y., Jpn. J. Appl. Phys. 32, 4413 (1993).Google Scholar
2 Kondow, M., Uomi, K., Hosomi, K., and Mozume, T., Jpn. J. Appl. Phys. 33, L1056 (1994).Google Scholar
3 Uesugi, K., Morooka, N., and Suemune, I., Appl. Phys. Lett. 74, 1254(1999).Google Scholar
4 Geisz, J. F., Friedman, D. J., Olson, J. M, Kurtz, S. R., and Keyes, B. M., J. Cryst. Growth 195, 401 (1998).Google Scholar
5 Baillargeon, J. N., Cheng, K. Y., Hofler, G. E., Pearah, P. J. and Hsieh, K. C., Appl. Phys. Lett. 60, 2540 (1992).Google Scholar
6 Shan, W., Walukiewicz, W., Yu, K. M., Wu, J., Ager, J. W., Haller, E. E., Xin, H. P., and Tu, C. W., Appl. Phys. Lett. 76, 3251 (2000).Google Scholar
7 Bi, W. G. and Tu, C. W., J. Appl. Phys. 80, 1934 (1996).Google Scholar
8 Shan, W., Walukiewicz, W., Yu, K. M., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., Kurtz, Sarah R., and Nauka, K., Phys. Rev. B62, 4211 (2000).Google Scholar
9 Shan, W., Yu, K. M., Walukiewicz, W., Ager, J. W., Haller, E. E. and Ridgway, M. C., Appl. Phys. Lett. 75, 1410 (1999).Google Scholar
10 Kondow, M., Kitatani, T., Nakatsuka, S., Larson, M. C., Nakahara, K., Yazawa, Y., Okai, M. and Uomi, K, IEEE J. Sel. Topics in Quantum Elect. 3, 719 (1997).Google Scholar
11 Kondow, M., Kitatani, T., Larson, M. C., Nakahara, K., Uomi, K. and Inoue, H., J. Crystal Growth 188, 255 (1998).Google Scholar
12 Friedman, D. J., Geisz, J. F., Kurtz, S. R., Myers, D. and J. M Olson, J. Cryst. Growth 195, 409(1998).Google Scholar
13 Kurtz, S. R., Allerman, A.A., Jones, E.D., Gee, J.M., Banas, J.J., and Hammons, B.E., Appl. Phys. Lett. 74, 729(1999).Google Scholar
14 Special issue of Semicond. Sci Technol:III-N-V Semiconductor Alloys 17, 741906. (2002).Google Scholar
15 Special Issue of J. Physics:Condensed Matter:Dilute Nitrides 16 (31), S22953412 (2004).Google Scholar
16 Buyanova, Irina and Chen, Weimin ed., Physics and Applications of Dilute Nitrides, (Taylor & Francis, New York, 2004).Google Scholar
17 Henini, M., ed., Dilute Nitride Semiconductors, (Elsevier, Oxford, UK, 2005).Google Scholar
18 Yu, K. M., Walukiewicz, W., Wu, J., Shan, W., and Beeman, J. W., Scarpulla, M. A., Dubon, O. D., and Becla, P., Phys. Rev. Lett. 91, 246203 (2003).Google Scholar
19 Shan, W., Walukiewicz, W., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, S. R., Phys. Rev. Lett. 82, 1221(1999).Google Scholar
20 Perkins, J. D., Masceranhas, A., Zhang, Y., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, S. R., Phys. Rev. Lett. 82, 3312 (1999).Google Scholar
21 Perlin, P., Wisniewski, P., Skierbiszewski, C., Suski, T., Kaminska, E., Subramanya, S. G., Weber, E. R., Mars, D. E., and Walukiewicz, W., Appl. Phys. Lett. 76, 1279 (2000).Google Scholar
22 Walukiewicz, W., Shan, W., Yu, K. M., Ager, J.W. III, Haller, E.E., Miotkowski, I., Seong, M. J., Alawadhi, H., Ramdas, A. K., Phys. Rev. Lett. 2000; 85: 1552.Google Scholar
23 Shan, W., Walukiewicz, W., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, Sarah R., J. Appl. Phys. 86, 2349(1999).Google Scholar
24 Shan, W., Walukiewicz, W., Yu, K. M., Ager, J. W. III, Haller, E. E., Xin, H. P., and Tu, C. W., Appl. Phys. Lett. 76, 3251 (2000).Google Scholar
25 Yu, K. M., Walukiewicz, W., Shan, W., Wu, J., Beeman, J. W., Ager, J. W. III, Haller, E. E., Xin, H. P., and Tu, C. W., Appl. Phys. Lett. 78, 1077 (2001).Google Scholar
26 Wolford, D. J., Bradley, J. A., Fry, K., and Thompson, J., in Proceedings of the 17th International Conference on the Physics of Semiconductors, edited by Chadi, J. D. and Harrison, W. A. (Springer, New York, 1984) p. 627.Google Scholar
27 Wu, J., Shan, W. and Walukiewicz, W., Semiconi. Sci. Tech., 17, 860 (2002).Google Scholar
28 Skierbiszewski, C., Perlin, P., Wišniewski, P., Knap, W., Suski, T., Walukiewicz, W., Shan, W., Yu, K. M., Ager, J.W., Haller, E.E., Geisz, J.F., and Olson, J.M., Appl. Phys. Lett. 76, 2409 (2000).Google Scholar
29 Yu, K. M., Walukiewicz, W., Shan, W., Ager, J. W. III, Wu, J., Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, Sarah R., Phys. Rev. B 61, R13337 (2000).Google Scholar
30 Yu, K. M., Walukiewicz, W., Shan, W., Wu, J., Ager, J. W. III, Haller, E. E., Geisz, J. F., and Ridgway, M. C., Appl. Phys. Lett. 77, 2858 (2000).Google Scholar
31 Yu, K. M., Walukiewicz, W., Wu, J., Mars, D., Chamberlin, D.R. Scarpulla, M. A., Dubon, O. D., and Geisz, J. F., Nature Materials 1, 185 (2002).Google Scholar
32 Wu, J., Yu, K. M., Walukiewicz, W., He, G., Haller, E. E., Mars, D. E., Chamberlin, D. R, Phys. Rev. B 68, 195202 (2003).Google Scholar
33 Yu, K. M., Walukiewicz, W., Wu, J., Shan, W., Beeman, J., Scarpulla, M. A., Dubon, O. D., Ridgway, M. C., Mars, D. E., and Chamberlin, D. R, Appl. Phys. Lett. 83, 2844 (2003).Google Scholar
34 Yu, K. M., Walukiewicz, W., Beeman, J. W., Scarpulla, M. A., Dubon, O., Pillai, M. R., and Aziz, M.,” Appl. Phys. Lett. 80, 3958 (2002).Google Scholar
35 Yu, K. M., Walukiewicz, W., Scarpulla, M. A., Dubon, O. D., Jasinski, J., Liliental-Weber, Z., Wu, J., Beeman, J. W., Pillai, M. R., and Aziz, M. J., J. Appl. Phys. 94, 1043 (2003)Google Scholar
36 Walukiewicz, W., Shan, W., Ager, J. W. III, Chamberlin, D. R., Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz., S. R., Proc. 195th Mtg. Electrochem. Soc. 1999; Vol.99-11: 190200.Google Scholar
37 Walukiewicz, W., Physica B, 302-303, 123 (2001).Google Scholar
38 Yu, S., Goesele, U. M. and Tan, T. Y., J. Appl. Phys. 66, 2952 (1989).Google Scholar
39 Ahlgren, T., Likonen, J., Slotte, J., Raeisaenen, J., Rajatora, M. and Keinonen, J., Phys. Rev. B56, 4597(1997).Google Scholar
40 Kurtz, Steven R., Allerman, A. A., Seager, C. H., Sieg, R. M., and Jones, E. D., Appl. Phys. Lett. 77, 400 (2000).Google Scholar
41 Blakemore, J. S., J. Appl. Phys. 53, R123 (1982).Google Scholar
42 Skierbiszewski, C., Perlin, P., Wisniewski, P., Suski, T., Geisz, J. F., Hingerl, K., Jantsch, W., Mars, D. E. and Walukiewicz, W., Phys. Rev. B65, 035207 (2001).Google Scholar
43 Bonch-Bruevich, V. L., phys. stat. sol. 42, 35 (1970).Google Scholar
44 Zhumatii, P. G., phys. stat. sol. (b) 75, 61 (1976).Google Scholar
45 Yeo, Y. K., Ehret, J. E., Pedrotti, F. L., Park, Y. S., and Theis, W. M., Appl. Phys. Lett. 35, 197 (1979).Google Scholar