Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-08T02:09:55.906Z Has data issue: false hasContentIssue false

Multiscale Simulations of Brittle Fracture and the Quantum-Mechanical Nature of Bonding in Silicon

Published online by Cambridge University Press:  21 March 2011

N. Bernstein
Affiliation:
Center for Computational Materials Science, Naval Research Laboratory, Washington, DC 20375, USA
D. Hess
Affiliation:
Center for Computational Materials Science, Naval Research Laboratory, Washington, DC 20375, USA
Get access

Abstract

We simulate the microscopic details of brittle fracture in silicon by dynamically coupling empirical-potential molecular dynamics of a strained sample to a quantum-mechanical description of interatomic bonding at the crack tip. Our simulations show brittle fracture at loads comparable to experiment, in contrast with empirical potential simulations that show only ductile crack propagation at much higher loading. While the ductility of the empirical potentials can be attributed to their short range, it is unclear whether the increased range of the tight-binding description is sufficient to explain its brittle behavior. Using the multiscale method we show that at a temperature of 1100 K, but not at 900 K, a dislocation is sometimes nucleated when the crack tip impinges on a vacancy. While this result is too limited in length and time scales to directly correspond to experimental observations, it is suggestive of the experimentally observed brittle to ductile transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hirsch, P. B. and Roberts, S. G., Phil. Mag. A 64, 55 (1991).Google Scholar
[2] Hauch, J. A. et al. , Phys. Rev. Lett. 82, 3823 (1999).Google Scholar
[3] Holland, D. and Marder, M., Phys. Rev. Lett. 80, 746 (1998).Google Scholar
[4] Holland, D. and Marder, M., Adv. Mat. 11, 793 (1999).Google Scholar
[5] Abraham, F. F. et al. , Mat. Res. Soc. Bull. 25, 27 (2000).Google Scholar
[6] Spence, J. C. H., Huang, Y. M., and Sankey, O., Acta Metall. Mater. 41, 2815 (1993).Google Scholar
[7] Perez, R. and Gumbsch, P., Phys. Rev. Lett. 84, 5347 (2000).Google Scholar
[8] Abraham, F. F. et al. , Europhys. Lett. 44, 783 (1998).Google Scholar
[9] Kohlhoff, S., Gumbsch, P., and Fischmeister, H. F., Phil. Mag. A 64, 851 (1991).Google Scholar
[10] Hoover, W. G., Groot, A. J. D., and Hoover, C. G., Comp. Phys. 6, 155 (1992).Google Scholar
[11] Nieminen, J. A. and Paavilainen, S., Phys. Rev. B 60, 2921 (1999).Google Scholar
[12] Cai, W. et al. , Phys. Rev. Lett. 85, 3213 (2000).Google Scholar
[13] Wen, G.-H. et al. , Int. J. Quant. Chem. 78, 459 (2000).Google Scholar
[14] Bazant, M. Z., Kaxiras, E., and Justo, J. F., Phys. Rev. B 56, 8542 (1997).Google Scholar
[15] Justo, J. F. et al. , Phys. Rev. B 58, 2539 (1998).Google Scholar
[16] Bernstein, N. and Kaxiras, E., Phys. Rev. B 56, 10488 (1997).10.1103/PhysRevB.56.10488Google Scholar
[17] Bernstein, N., In preparation.Google Scholar
[18] Tuckerman, M., Berne, B. J., and Martyna, G. J., J. Chem. Phys. 97, 1990 (1992).Google Scholar
[19] Broberg, K. B., in Cracks and Fracture (Academic Press, San Diego, 1999), p. 132.Google Scholar
[20] Cramer, T., Wanner, A., and Gumbsch, P., Phys. Rev. Lett. 85, 788 (2000).Google Scholar
[21] Marder, M. and Liu, X., Phys. Rev. Lett. 71, 2417 (1993).Google Scholar
[22] Rice, J. R., J. Mech. Phys. Solids 40, 239 (1992).Google Scholar