Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:34:33.375Z Has data issue: false hasContentIssue false

Multiscale Modeling of CdTe Thin Film Deposition Process

Published online by Cambridge University Press:  18 January 2013

Alexey Gavrikov
Affiliation:
Kintech Lab Ltd., 1, Kurchatov Sq., Moscow 123182, Russia
Andrey Knizhnik
Affiliation:
Kintech Lab Ltd., 1, Kurchatov Sq., Moscow 123182, Russia
Dmitry Krasikov
Affiliation:
Kintech Lab Ltd., 1, Kurchatov Sq., Moscow 123182, Russia
Boris Potapkin
Affiliation:
Kintech Lab Ltd., 1, Kurchatov Sq., Moscow 123182, Russia
Svetlana Selezneva
Affiliation:
GE Global Research, Niskayuna, NY 12309 U.S.A.
Timothy Sommerer
Affiliation:
GE Global Research, Niskayuna, NY 12309 U.S.A.
Get access

Abstract

Deposition of semiconductor films is a key process for production of thin-film solar cells, such as CdTe or CIGS cells. In order to optimize photovoltaic properties of the film a comprehensive model of the deposition process should be build, which can relate deposition conditions and film properties. We have developed a multiscale model of deposition of CdTe film in close space sublimation (CSS) process. The model is based on kinetic Monte Carlo method on the rigid lattice, in which each site can be occupied by either Cd or Te atom. The model tabulates the energy of the site as a function of its local environment. These energies were obtained from first-principles calculates and then approximated with analytical formulas. Based on determined energies of each site we performed exchange (diffusion) processes using Metropolis algorithm. In addition the model included adsorption and desorption processes of Cd and Te2 species. The results of the model show that a steady-state structure of the surface layer is formed during film growth. The model can reproduce transition from film deposition to film etching depending on external conditions. Moreover, the model can predict deposition rates for non-stoichiometric gas compositions.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alamri, S.N., Phys. Stat. Sol (a) 200, p352360, (2003).CrossRefGoogle Scholar
Luschitz, J., Lakus-Wollny, K., Klein, A., Jaegermann, W., Thin Solid Films, 515, 58145818, (2007).10.1016/j.tsf.2006.12.171CrossRefGoogle Scholar
Cruz-Campa, , Zubia, D., Solar Energy Materials & Solar Cells 93, 1518 (2009).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., Ernzerhof, M., Phys. Rev. Lett., 77, 3865 (1996).CrossRefGoogle Scholar
Hohenberg, P., Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133(1965).CrossRefGoogle Scholar
Kresse, G., Furthmuller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Blöchl, P. E., Phys. Rev. B 50, 1795317978 (1994).10.1103/PhysRevB.50.17953CrossRefGoogle Scholar
Budininkas, P., Edwards, R. K., Wahlbeck, P. G., J. Chem. Phys, 48, 28702873 (1968).10.1063/1.1669545CrossRefGoogle Scholar
Berkowitz, J, Chupka, W A., J. Chem. Phys. 50, 4245 (1969).10.1063/1.1670889CrossRefGoogle Scholar
Viswanathan, R., Sai Baba, M., Darwin, D. et a., Spectrochimica Acta Part B: Atomic Spectroscopy 49, 243250 (1994).CrossRefGoogle Scholar
Møller, C. and Plesset, M., “Note on an Approximation Treatment for Many-Electron Systems,Phys. Rev. 46, p. 618622, 1934.10.1103/PhysRev.46.618CrossRefGoogle Scholar
Čížek, J., “On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell‐Type Expansion Using Quantum‐Field Theoretical Methods,J. Chem. Phys 45, p. 4256, 1966.10.1063/1.1727484CrossRefGoogle Scholar
Laikov, D. N. and Ustynyuk, Yu.A., Izv. Akad. Nauk SSSR, Ser.Khim., 2005, No. 3, 805; (b) D. N. Laikov and Yu. A. Ustynyuk, Russ. Chem. Bull., 2005, 54, No. 3, 820. Google Scholar
Tatarenko, S., Daudin, B., Brun, D., Etgens, V. H., Veron, M. B., Phys. Rev. B 50, 1847918488, (1994)CrossRefGoogle ScholarPubMed
Brebrick, R., Journal of Phase Equilibria and Diffusion. 31, p. 260269 (2010).10.1007/s11669-009-9644-5CrossRefGoogle Scholar
Goldfinger, P., Jeunehomme, M., Trans. Farad. Soc., 59, p 28512867 (1963).CrossRefGoogle Scholar