Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T08:58:40.541Z Has data issue: false hasContentIssue false

Multiscale Computational Model of Soft Elasticity and Director Reorientation in Nematic Gels

Published online by Cambridge University Press:  01 February 2011

Antonio DeSimone*
Affiliation:
International School for Advanced Studies (SISSA), Via Beirut 2–4, 34014 Trieste, Italy
Get access

Abstract

A coarse-grained model of soft elasticity of nematic elastomers is presented, in which fine-scale spatial oscillations are carefully accounted for in the definition of an effective energy density, and then averaged out from the kinematics. Algorithmically, this amounts to taking a suitable convex envelope of the original free-energy of the system. The resulting finite element simulations of stretching experiments on thin sheets of nematic elastomers enable us to resolve simultaneously the macroscopic mechanical response (e.g., deformed shape, stress-strain curves) and the underlying microscopic mechanisms (e.g., evolution of domain structures, local reorientation of the nematic director).

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Küpfer, J. and Finkelmann, H., Makromol, H.. Chem. Rapid Comm. 12, 717 (1991).10.1002/marc.1991.030121211Google Scholar
[2] Warner, M. and Terentjev, E. M., Prog. Polym. Sci. 21, 853 (1996).10.1016/S0079-6700(96)00013-5Google Scholar
[3] Kundler, I. and Finkelmann, H., Macromol. Rapid Comm. 16, 679 (1995).10.1002/marc.1995.030160908Google Scholar
[4] Bladon, P., Terentjev, E. M. and Warner, M., Phys. Rev. E 47, R3838 (1993).10.1103/PhysRevE.47.R3838Google Scholar
[5] Ball, J. M. and James, R. D., Arch. Rat. Mech. Anal, bf 100, 13 (1987).10.1007/BF00281246Google Scholar
[6] DeSimone, A., Ferroelectrics 222, 275 (1999).10.1080/00150199908014827Google Scholar
[7] DeSimone, A. and Dolzmann, G., Physica D 136, 175 (2000).10.1016/S0167-2789(99)00153-0Google Scholar
[8] Finkelmann, H., Kundler, I., Terentjev, E. M and Warner, M., J. Phys. II France 7, 1059 (1997).10.1051/jp2:1997171Google Scholar
[9] Müller, S., in Calculus of Variations and Geometric Evolution Problems, edited by Bethuel, F., Huisken, G., Müller, S., Steffen, K., Hildebrandt, S. and Struwe, M. (Springer, Berlin, 1999).Google Scholar
[10] DeSimone, A. and Dolzmann, G., Arch. Rat. Mech. Anal. 161, 181 (2002).10.1007/s002050100174Google Scholar
[11] Conti, S., DeSimone, A. and Dolzmann, G., J. Mech. Phys. Solids 50, 1431 (2002).10.1016/S0022-5096(01)00120-XGoogle Scholar
[12] Zubarev, E. R., Kuptsov, S. A., Yuranova, T. I., Talroze, R. V. and Finkelmann, H., Liquid Crystals 26, 1531 (1999).10.1080/026782999203869Google Scholar